So sánh \(A = \dfrac{{{{2018}^{2018}} + 1}}{{{{2018}^{2019}} + 1}}\) và \(B = \dfrac{{{{2018}^{2017}} + 1}}{{{{2018}^{2018}} + 1}}\) .
-
A.
$A < B$
-
B.
\(A = B\)
-
C.
\(A > B\)
-
D.
Không kết luận được
Sử dụng tính chất so sánh: Nếu \(\dfrac{a}{b} < 1\) thì \(\dfrac{a}{b} < \dfrac{{a + m}}{{b + m}}\)
Dễ thấy \(A < 1\) nên:
\(A = \dfrac{{{{2018}^{2018}} + 1}}{{{{2018}^{2019}} + 1}} < \dfrac{{\left( {{{2018}^{2018}} + 1} \right) + 2017}}{{\left( {{{2018}^{2019}} + 1} \right) + 2017}}\)\( = \dfrac{{{{2018}^{2018}} + 2018}}{{{{2018}^{2019}} + 2018}} = \dfrac{{2018.\left( {{{2018}^{2017}} + 1} \right)}}{{2018.\left( {{{2018}^{2018}} + 1} \right)}}\)\( = \dfrac{{{{2018}^{2017}} + 1}}{{{{2018}^{2018}} + 1}} = B\)
Vậy \(A < B\)
Đáp án : A



