Cho tam giác ABC vuông tại B có góc ˆA=30o,AB=6cmˆA=30o,AB=6cm. Vẽ tia Bt sao cho ^tBC=30oˆtBC=30o, cắt tia AC ở D (C nằm giữa A và D).
a) Chứng minh tam giác ABD cân tại B.
b) Tính khoảng cách từ D đến đường thẳng AB.
a) + Tính được ^DBA=^DBC+^CBA=120oˆDBA=ˆDBC+ˆCBA=120o.
+ Tính được ^BDA=30oˆBDA=30o nên tam giác ABD cân tại B.
b) + BD=AB=6cmBD=AB=6cm.
+ Kẻ DE vuông góc với AB tại E. Khi đó, DE là khoảng cách từ D đến đường thẳng AB.
+ ^DBE=180o−^DBA=60oˆDBE=180o−ˆDBA=60o.
+ Tam giác BED vuông tại E nên ED=BD.sin^DBEED=BD.sinˆDBE.
a) ΔΔABC vuông tại B nên ^CBA=90oˆCBA=90o. Ta có: ^DBA=^DBC+^CBA=30o+90o=120oˆDBA=ˆDBC+ˆCBA=30o+90o=120o
ΔΔDBA có: ^BDA=180o−^DBA−ˆA=180o−120o−30o=30oˆBDA=180o−ˆDBA−ˆA=180o−120o−30o=30o. Do đó, ^BDA=ˆAˆBDA=ˆA nên ΔABD cân tại B.
b) Vì ΔABD cân tại B nên BD=AB=6cm.
Kẻ DE vuông góc với AB tại E. Khi đó, DE là khoảng cách từ D đến đường thẳng AB.
Ta có: ^DBE=180o−^DBA=180o−120o=60o.
ΔBED vuông tại E nên ED=BD.sin^DBE=6.sin60o=6.√32=3√3(cm)
Vậy khoảng cách từ D đến đường thẳng AB bằng 3√3cm.
Các bài tập cùng chuyên đề
Cho tam giác ABC vuông tại A có BC=a,AC=b,AB=c. Chọn khẳng định sai?
Cho hình thang ABCD (AD // BC) có AD=16cm,BC=4cm,ˆA=ˆB=^ACD=900.
a) Kẻ đường cao CE của tam giác ACD. Chứng minh ^ADC=^ACE. Tính sin của các góc ^ADC,^ACE và suy ra AC2=AE.AD. Từ đó tính AC.
b) Tính góc D của hình thang.
Một cuốn sách khổ 17×24 cm, tức là chiều rộng 17 cm, chiều dài 24 cm. Gọi α là góc giữa đường chéo và cạnh 17 cm. Tính sinα,cosα (làm tròn đến chữ số thập phân thứ hai) và tính số đo α (làm tròn đến độ) .
Cho tam giác ABC có chân đường cao AH nằm giữa B và C. Biết HB=3cm,HC=6cm,^HAC=600. Hãy tính độ dài các cạnh (làm tròn đến cm) , số đo các góc của tam giác ABC (làm tròn đến độ) .
Tính các số liệu còn thiếu (dấu “?”) ở Hình 4.28 với góc làm tròn đến độ, với độ dài làm tròn đến chữ số thập phân thứ nhất.
Trong một buổi tập trận, một tàu ngầm đang ở trên mặt biển bắt đầu di chuyển theo đường thẳng tạo với mặt nước một góc 210 để lặn xuống (H.4.31) .
a) Khi tàu chuyển động theo hướng đó và đi được 200 m thì tàu ở độ sâu bao nhiêu so với mặt nước biển? (làm tròn đến m) .
b) Giả sử tốc độ của tàu là 9 km/h thì sau bao lâu (tính từ lúc bắt đầu lặn) tàu ở độ sau 200 m (tức là cách mặt nước biển 200 m) ?
Để đo khoảng cách giữa hai điểm A và B không tới được, một người đứng ở điểm H sao cho B ở giữa A và H rồi dịch chuyển đến điểm K sao cho KH vuông góc với AB tại H, HK=a(m), ngắm nhìn A với ^AKH=α, ngắm nhìn B với ^BKH=β(α>β).
a) Hãy biểu diễn AB theo a,α,β.
b) Khi a=3m,α=60o,β=30o, hãy tính AB (làm tròn kết quả đến chữ số thập phân thứ ba của mét).
Cho tam giác ABC vuông tại A (Hình 1).
a) Hãy tính sin B theo b và a, cos B theo c và a. Sử dụng các kết quả tính được để giải thích tại sao ta lại có các đẳng thức:
b = a.sin B
c = a.cos B
b) Hãy tính tan B theo b và c, cot B theo c và b. Sử dụng các kết quả tính được ở trên để giải thích tại sao ta lại có các đẳng thức:
b = c.tan B
c = b.cot B.
Cho tam giác ABC vuông tại A có AC = 10 cm, ˆC=60o. Độ dài hai cạnh còn lại là:
A. AB=5√33cm;BC=20√33cm
B. AB=10√33cm;BC=14√33cm
C. AB=10√3cm;BC=20cm
D. AB=10√33cm;BC=20√33cm
Cho tam giác ABC có đường cao AH=6cm,ˆB=40∘,ˆC=35∘. Tính độ dài các đoạn thẳng AB,BH,AC,BC (làm tròn kết quả đến hàng phần mười của centimét).
Trong Hình 24, cho ˆO=α,AB=m và ^OAB=^OCA=^ODC=90∘.
Chứng minh:
a) OA=m.cotα;
b) AC=m.cosα;
c) CD=m.cos2α.
Một người đứng ở vị trí B trên bờ sông muốn sử dụng la bàn để ước lượng khoảng cách từ vị trí đó đến một vị trí A ở trên một cù lao giữa dòng sông. Người đó đã làm như sau:
- Sử dụng la bàn, xác định được phương BA lệch với phương Nam – Bắc về hướng Đông 52∘.
- Người đó di chuyển đến vị trí C, cách B một khoảng là 187m. Sử dụng la bàn, xác định được phương CA lệch với phương Nam – Bắc về hướng Tây 27∘; CB lệch với phương Nam – Bắc về hướng Tây 70∘ (Hình 42).
Em hãy giúp người đó tính khoảng cách AB từ những dữ liệu trên (làm tròn kết quả đến hàng đơn vị của mét).
Cho ΔABC vuông tại A như Hình 4.17. Xác định tên các góc nhọn ở các ô ?:
Vì ba=cos? nên b=a.cos?;
Vì ba=sin? nên b=a.sin?;
Vì bc=tan? nên b=c.tan?;
Vì bc=cot? nên b=c.cot?;
Tính độ dài cạnh bên CD của hình thang ABCD trong Hình 4.24.
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho.
Một chiếc thang AC được dựng vào một bức tường thẳng đứng (Hình 4.30).
a) Ban đầu, khoảng cách từ chân thang đến tường là BC=1,3m và góc tạo bởi thang và phương nằm ngang là ^ACB=66o, tính độ dài của thang.
b) Nếu đầu A của thang bị trượt xuống 40cm đến vị trí D thì góc DEB tạo bởi thang và phương nằm ngang khi đó bằng bao nhiêu?
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho.
Trong Hình 4.32, mặt tiền mái nhà có chiều rộng BC=3m và hai bên mái AB, AC cùng bằng 1,8m.
a) Tính chiều cao AH của mái nhà.
b) Tính góc BAC tạo bởi hai mép của mái nhà.
Trong Hình 4.35, tỉ số BCAH bằng
A. √33+1.
B. √3+1.
C. √22+1.
D. √2+1.
Cho hình vẽ
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
Một chiếc diều ABCD có AB=BC,AD=DC. Biết AB=12cm,^ADC=40∘,^ABC=90∘. Chiều dài cạnh AD và diện tích của chiếc diều là: (làm tròn đến hàng phần trăm)
Cho tam giác ABC vuông tại A có BC=a,AC=b,AB=c,^ABC=50∘ Chọn khẳng định đúng?
Cho tam giác ABC vuông tại A có AC=10cm,ˆC=30∘. Tính AB;BC
Cho tam giác ABC vuông tại A có AC=20cm,ˆC=60∘. Tính AB;BC
Giải tam giác vuông ABC trong mỗi trường hợp sau:
Tìm x, y trong mỗi hình 14a, 14b, 14c (làm tròn kết quả đến hàng phần mười của centimet).
Cho tam giác ABC vuông tại A. Chứng minh tanˆB2=ACAB+BC
Cho A, B là hai địa điểm ở hai bên bờ sông, biết AN và PM cùng vuông góc MN, MN=n (mét), MP=p (mét), p>n và ^MPA=α (H.4.12). Chứng minh rằng: AB=ptanα−nsinα.
Chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Tam giác ABC vuông tại A, có AB = 24 cm, BC = 25 cm, AH là đường cao (Hình 5).
a) AC = 8 cm
b) ˆB≈16,26o
c) cosC=2425
D. AH≈7
Chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Từ điểm A trên đỉnh một toà nhà cao 30 m, một người nhìn thấy một ô tô đang dừng tại vị trí B dưới một góc nghiêng xuống là 55o (Hình 6).
a) OB≈21m
b) AB=47m
c) ^OAB=35o
D. ^OBA=35o
Từ một đài quan sát, một người đặt mắt tại vị trí B. Người đó nhìn thấy một chiếc ô tô ở vị trí C theo phương BC tạo với phương nằm ngang Bx một góc là ^CBx=23∘với Bx // AC. Khi đó, khoảng cách giữa ô tô và chân đài quan sát là AC = 1284 m. Nếu ô tô từ vị trí C tiếp tục đi về phía chân đài quan sát với tốc độ 60 km/h thì sau 1 phút, người đó nhìn thấy ô tô ở vị trí D với góc ^DBx=α∘ (Hình 25).
a) Tính chiều cao của đài quan sát (làm tròn kết quả đến hàng đơn vị của mét), biết độ cao từ tầm mắt của người đó đến đỉnh đài quan sát là 3 m.
b) Tính số đo góc α (làm tròn kết quả đến hàng đơn vị của phút).
c) Tính khoảng cách từ mắt người quan sát đến vị trí D (làm tròn kết quả đến hàng đơn vị của mét).