Cho nguyên tố \(p\) chia cho \(42\) có số dư \(r\) là hợp số. Tìm \(r.\)
-
A.
$r = 29$
-
B.
$r = 15$
-
C.
$r = 27$
-
D.
$r = 25$
+ Biểu diễn số nguyên tố \(p\) theo số chia \(42\) và thương \(r.\)
+ Dựa vào định nghĩa số nguyên tố để lập luận và tìm các giá trị \(r\) thỏa mãn.
Ta có \(p = 42.a + r = 2.3.7.a + r\,\left( {a,r \in N;0 < r < 42} \right)\)
Vì \(p\) là số nguyên tố nên \(r\) không chia hết cho \(2;3;7.\)
Các hợp số nhỏ hơn \(42\) không chia hết cho \(2\) là \(9;15;21;25;27;33;35;39\)
Loại bỏ các số chia hết cho \(3\) và \(7\) ta còn số \(25.\)
Vậy \(r = 25.\)
Đáp án : D