Đề bài

Cho \(\Delta MNP\) vuông tại M có MN < MP, kẻ đường phân giác NI của góc MNP (I thuộc MP). Kẻ IK vuông góc với NP tại K.

a) Chứng minh \(\Delta IMN = \Delta IKN\)

b) Chứng minh \({\rm{MI }} < {\rm{ IP}}\).

c) Gọi Q là giao điểm của đường thẳng IK và đường thẳng MN, đường thẳng \(NI\)cắt QP tại D. Chứng minh \(ND \bot QP\) và \(\Delta QIP\) cân tại I.

Phương pháp giải

a) Chứng minh \(\Delta IMN = \Delta IKN\)(cạnh huyền - góc nhọn)

b) Chứng minh \(IM = IK\), IP > IK nên IP > IM.

c) Chứng minh I là trực tâm của tam giác QNP nên \(ND \bot QP\).

Chứng minh \(\Delta NQP\) cân tại \(N\) nên DQ = DP.

\(\Delta QIP\) có \(ID\) vừa là đường cao, vừa là đường trung tuyến nên \(\Delta QIP\) cân tại \(I\)

Lời giải của GV Loigiaihay.com

a) Xét \(\Delta IMN\) và \(\Delta IKN\) có:

\(\widehat {IMN} = \widehat {IKN} = {90^0}\)

NI chung

\(\widehat {MNI} = \widehat {KNI}\) (NI là đường phân giác NI của góc MNP)

suy ra \(\Delta IMN = \Delta IKN\)(cạnh huyền - góc nhọn)

b) Vì \(\Delta IMN = \Delta IKN\) nên IM = IK (hai cạnh tương ứng) (1)

Vì \(\Delta IKP\) vuông tại K nên IP > IK (2)

Từ (1) và (2) suy ra IP > IM

c) Xét \(\Delta NQP\) có đường cao QK và PM cắt nhau tại I nên I là trực tâm của tam giác NQP.

Do đó \(ND \bot QP\)

Vì \(\Delta NQP\) có ND vừa là đường cao vừa là đường phân giác nên \(\Delta NQP\) cân tại N.

Suy ra ND là đường trung tuyến của tam giác NQP hay QD = DP.

Xét \(\Delta QIP\) có ID vừa là đường cao vừa là đường trung tuyến nên \(\Delta QIP\) cân tại I.