Giải bài toán bằng cách lập phương trình
Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 17 ngày. Do cải tiến kĩ thuật, năng suất mỗi ngày tăng thêm 7 tấm nên không những xí nghiệp đã hoàn thành kế hoạch sớm hơn 2 ngày mà còn dệt được thêm 7 tấm. Tính số thảm len mà xí nghiệp phải dệt theo hợp đồng.
Giải bài toán bằng cách lập phương trình.
Gọi số thảm xí nghiệp phải dệt trong 1 ngày theo hợp đồng là x (tấm) (x > 0)
Biểu diễn năng suất mỗi ngày của xí nghiệp, số thảm theo x và lập phương trình.
Giải phương trình và kiểm tra nghiệm.
Gọi số thảm xí nghiệp phải dệt trong 1 ngày theo hợp đồng là x (tấm) (x > 0)
Thực tế một ngày xí nghiệp dệt được: x + 7 (tấm)
Số thảm len mà xí nghiệp phải dệt theo hợp đồng là: 17x (tấm)
Thực tế số thảm xí nghiệp dệt được là:
(17 – 2).(x + 7) = 15(x + 7) (tấm)
Theo bài ra ta có phương trình:
\(15(x + 7) = 17x + 7\)
Giải phương trình ta được: \(x = 49\) (thỏa mãn)
Vậy số thảm len xí nghiệp phải dệt theo hợp đồng là: 17.49 = 833 (tấm)
Các bài tập cùng chuyên đề
Phương trình bậc nhất một ẩn \(ax + b = 0\left( {a \ne 0} \right)\). Hạng tử tự do là
Phương trình nào dưới đây chỉ có một nghiệm
Cho $\Delta ABC\backsim \Delta A'B'C'$. Khẳng định nào sau đây là sai?
Điều kiện để $\Delta ABC\backsim \Delta DEF$ theo trường hợp cạnh – góc – cạnh nếu \(\widehat B = \widehat E\) là:
Giải các phương trình sau:
a) \(8 + 2\left( {x - 1} \right) = 20\)
b) \(4\left( {3x - 2} \right) + 3\left( {x - 4} \right) = 7x + 20\)
c) \(\frac{{2x}}{3} + x = \frac{{2x + 5}}{6} + \frac{1}{2}\)
Cho \(\Delta ABC\) nhọn (AB < AC). Hai đường cao BE và CF.
a) Chứng minh $\Delta ABE\backsim \Delta ACF$ và \(AE.AC = AF.AB\)
b) Trên tia BE lấy điểm N sao cho \(\widehat {ANC} = {90^0}\) (E nằm giữa B và N). Chứng minh $\Delta ANE\backsim \Delta ACN$ và \(A{N^2} = AE.AC\).
c) Trên cạnh CF lấy điểm M sao cho AM = AN. Tính số đo \(\widehat {AMB}\).