Đề bài

Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right).\) Tính \(f'\left( 0 \right).\)

Phương pháp giải

Sử dụng phương pháp tính đạo hàm theo định nghĩa

Lời giải của GV Loigiaihay.com

Theo định nghĩa đạo hàm của hàm số tại một điểm:

\(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right)}}{x}\)

\( = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right)} \right] = \left( { - 1} \right).\left( { - 2} \right).\left( { - 3} \right)....\left( { - 1000} \right) = 1000!\)

Vậy \(f'\left( 0 \right) = 1000!\)

Các bài tập cùng chuyên đề

Bài 1 :

Cho các số thực \(a,b,\alpha \left( {a > 0;b > 0} \right)\). Mệnh đề nào sau đây đúng?

Xem lời giải >>
Bài 2 :

Cho \({\log _a}b = 3\) và \({\log _a}c = 2\). Tính \(P = {\log _a}\left( {b{c^2}} \right)\)

Xem lời giải >>
Bài 3 :

Cho hàm số \(f\left( x \right) = \ln \left( {{x^2} - 2x + 4} \right)\). Tìm các giá trị của \(x\) để \(f'\left( x \right) > 0\)?

Xem lời giải >>
Bài 4 :

Cho \(A\), \(B\) là hai biến cố xung khắc. Đẳng thức nào sau đây đúng?

Xem lời giải >>
Bài 5 :

Gieo một con xúc xắc có sáu mặt, các mặt 1, 2, 3, 4 được sơn đỏ, mặt 5, 6 sơn xanh. Gọi A là biến cố được mặt số lẻ, B là biến cố được mặt sơn màu đỏ. Xác suất của \(A \cap B\) là:

Xem lời giải >>
Bài 6 :

Cho hàm số \(y = f(x)\) có đồ thị \((C)\) và đạo hàm \(f'(2) = 6.\) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\left( {2;f\left( 2 \right)} \right)\) bằng

Xem lời giải >>
Bài 7 :

Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}.\) Giá trị của \(f''\left( 1 \right)\) bằng?

Xem lời giải >>
Bài 8 :

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật và \(SA \bot (ABCD).\) Mệnh đề nào dưới đây đúng ?

Xem lời giải >>
Bài 9 :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\)\(SA \bot (ABCD)\) và \(SA = a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng \((ABCD)\) bằng:

Xem lời giải >>
Bài 10 :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot (ABCD),\)\(AB = a\) và \(SB = \sqrt 2 a.\) Khoảng cách từ điểm \(S\) đến mặt phẳng \((ABCD)\) bằng?

Xem lời giải >>
Bài 11 :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Kí hiệu \(d(A,(SCD))\) là khoảng cách giữa điểm A và mặt phẳng\((SCD)\).  Khẳng định nào sau đây đúng:

Xem lời giải >>
Bài 12 :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng:

Xem lời giải >>
Bài 13 :

Một chất điểm chuyển động có phương trình \(s\left( t \right) = {t^3} - 3{t^2} - 9t\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Tính gia tốc tức thời tại thời điểm \(t = 3s?\)

Xem lời giải >>
Bài 14 :

Cho hàm số \(y = \frac{{{x^2} - x + 3}}{{x + 1}}\), biết \(y' = \frac{{a{x^2} + bx + c}}{{{{\left( {x + 1} \right)}^2}}}\). Tính \(a + b + c.\)

Xem lời giải >>
Bài 15 :

Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{x}\)

Xem lời giải >>
Bài 16 :

Cho hình chóp \(S.ABCD\)có đáy \(ABCD\)là hình chữ nhật, \(AD = 2a,AB = 3a\). Cạnh bên \(SA\) vuông góc với đáy, \(SA = 2a\). Khoảng cách giữa hai đường thẳng \(AB\)và \(SD\) bằng

Xem lời giải >>
Bài 17 :

Tính diện tích của tam giác tạo bởi các trục tọa độ với tiếp tuyến của đồ thị hàm số \(y = \frac{{2{a^2}}}{x}\) (\(a\) là hằng số khác \(0\))

Xem lời giải >>