Trong đợt kiểm tra cuối học kì II lớp 11 của các trường trung học phổ thông, thống kê cho thấy có 93% học sinh tỉnh X đạt yêu cầu; 87% học sinh tỉnh Y đạt yêu cầu. Chọn ngẫu nhiên một học sinh của tỉnh X và một học sinh của tỉnh Y. Giả thiết rằng chất lượng học tập của hai tỉnh là độc lập
a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là\(0,7809\)
b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là \(0,0091\)
c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là \(0,1818\)
d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là \(0,9909\)
a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là\(0,7809\)
b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là \(0,0091\)
c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là \(0,1818\)
d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là \(0,9909\)
Sử dụng công thức nhân xác suất cho hai biến cố độc lập
Xác suất để học sinh tỉnh X không đạt yêu cầu là \(100\% - 93\% = 7\% = 0,07\)
Xác suất để học sinh tỉnh Y không đạt yêu cầu là \(100\% - 87\% = 13\% = 0,13\)
Gọi A là biến cố: “Học sinh tỉnh X đạt yêu cầu”
B là biến cố: “Học sinh tỉnh Y đạt yêu cầu”
Khi đó ta có: \(P(A) = 0,93;P(B) = 0,87;P(\overline A ) = 0,07;P(\overline B ) = 0,13\)
a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:
\(P(AB) = P(A).P(B) = 0,93.0,87 = 0,8091\)
b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là
\(P(\overline {AB} ) = P(\overline A ).P(\overline B ) = 0,07.0,13 = 0,0091\)
c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là:
\(P(A\overline B ) + P(\overline A B) = 0,93.0,13 + 0,07.0,87 = 0,1818\)
d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là:
\(P(A \cup B) = P(A) + P(B) - P(AB) = 0,93 + 0,87 - 0,8091 = 0,9909\)