Một chất điểm chuyển động có phương trình chuyển động là \(s = s(t) = 2{t^2} + t - 1\) (t được tính bằng giây, s được tính bẳng mét)
a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \({t_0} + 4\)
b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 2\)là \(9\,(m/s)\)
c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là 12 \((m/s)\)
d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)là 5 (m/s)
a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \({t_0} + 4\)
b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 2\)là \(9\,(m/s)\)
c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là 12 \((m/s)\)
d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)là 5 (m/s)
Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)
Phương trình gia tốc của chất điểm: \(a(t) = v'(t)\)
a) Đạo hàm của hàm số \(s(t)\)tại thời điểm \({t_0}\)
Ta có:
\(\begin{array}{l}f'({t_0}) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f(t) - f({t_0})}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{2{t^2} + t - 1 - (2{t_0}^2 + {t_0} - 1)}}{{t - {t_0}}}} \right)\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{(t - {t_0})\left[ {2\left( {t + {t_0}} \right) + 1} \right]}}{{t - {t_0}}}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \left[ {2\left( {t + {t_0}} \right) + 1} \right] = 4{t_0} + 1\end{array}\)
b) Phương trình vận tốc của chất điểm là: \(v(t) = s' = s'(t) = 4t + 1\)
Vận tốc tức thời của chuyển động tại thời điểm t = 2 (s) là: \(v(2) = 4.2 + 1 = 9\)\((m/s)\)
c) Vận tốc tức thời của chuyển động tại thời điểm t = 5 (s) là: \(v(5) = 4.5 + 1 = 21\)\((m/s)\)
d) Trong khoảng thời gian từ \(t = 0\) tới \(t = 2s\)thì chất điểm di chuyển được quãng đường: \(4.2 + 2 - 1 = 9(m)\)
Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 2s kể từ thời điểm \(t = 0\) là:
\(\overline v = \frac{{\Delta s}}{{\Delta t}} = \frac{{9 - 0}}{{2 - 0}} = 4,5(m/s)\)
Các bài tập cùng chuyên đề
Đạo hàm của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^3} + 2{x^2} + x + 4} - 2}}{{x + 1}}{\rm{ khi }}x \ne - 1\\0{\rm{ khi }}x = - 1\end{array} \right.\) tại \(x = - 1\) là:
Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây?
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) với \(a,b,c,d \in R\);\(a > 0\) và \(\left\{ \begin{array}{l}d > 2021\\a + b + c + d - 2021 < 0\end{array} \right.\). Hỏi phương trình \(f\left( x \right) - 2021 = 0\) có mấy nghiệm phân biệt?
Cho hình chóp S.ABC có SA ⊥ (ABC) và ΔABC vuông ở B. AH là đường cao của ΔSAB. Khẳng định nào sau đây sai ?
Cho hàm số \(y = \frac{{x - 1}}{{x - 2}}\), tiếp tuyến tại giao điểm của đồ thị hàm số với trục hoành có phương trình là:
Trong không gian, cho \(\alpha \) là góc giữa 2 mặt phẳng (P) và (Q) nào đó. Hỏi góc \(\alpha \) thuộc đoạn nào?
Cho hàm số \(f(x) = \frac{{2x - 3}}{{x - 1}}\) , các mệnh đề sau, mệnh đề nào sai?
Biết rằng \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 2x + m + 1} \right) = 11\). Hỏi m thuộc khoảng nào trong các khoảng sau?
Cho hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x - 2x\). Bất phương trình \(y' < 0\) có tập nghiệm T là :
Cho hình chóp S.ABCD có SA ⊥ (ABCD) và đáy ABCD là hình vuông. Hỏi mp(SCD) vuông góc với mặt phẳng nào trong các mặt phẳng sau ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy ABCD và C. Hỏi khoảng cách từ điểm A tới mặt phẳng (SBC) bằng:
Cho hình chóp tứ giác đều S.ABCD. Đáy ABCD là hình vuông tâm O, gọi I là trung điểm của cạnh AD. Hỏi góc giữa 2 mặt phẳng (SAD) và (ABCD) là:
Tính giới hạn: \(I = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {x + 3} - 2x}}{{{x^2} - 3x + 2}}\)
Cho hàm số : \(f\left( x \right) = {\sin ^3}\left( {\frac{\pi }{3} - 2x} \right)\). Tính \(f'\left( {\frac{\pi }{3}} \right)\).
Sau khi đỗ Đại học bạn Nam được bố mua cho chiếc xe máy để sử dụng. Xe có giá trị ban đầu là 20 triệu, sau mỗi năm giá trị xe giảm 10% so với năm trước đó. Hỏi sau bao nhiêu năm thì giá trị của xe còn lại là 12 triệu.
Tìm a để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 2{x^2} + 3x - 2}}{{x - 1}};\,\,khi\,x \ne 1\\2x + a\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 1\end{array} \right.\)liên tục trên R
Cho hình chóp \(S.ABC\) có cạnh bên \(SA\) vuông góc với mặt phẳng \((ABC)\) và \(ABC\) là tam giác đều cạnh bằng \(a.\) Biết khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\) bàng \(a\sqrt {\frac{6}{{11}}} \) . Tính thể tích khối chóp \(S.ABC\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B.\) Biết \(AD = 2a,\,AB = BC = SA = a.\) Cạnh bên \(SA\) vuông góc với mặt đáy, gọi \(M\) là trung điểm của \(AD.\) Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {SCD} \right)\) theo \(a.\)