Đề bài

Cho hai đường thẳng \(d:y = mx - \left( {2m + 2} \right)\) và \(d':y = \left( {3 - 2m} \right)x + 1\) với \(m \ne 0\) và \(m \ne \frac{3}{2}\) Tìm giá trị của \(m\) để \(d\) và \(d\) ' cắt nhau.

  • A.
    \(m \ne 1\)
  • B.
    \(m \ne 0,m \ne \frac{3}{2}\)
  • C.
    \(m \ne 0,m \ne \frac{3}{2},m \ne 1\)
  • D.
    \(m \ne 0,m \ne \frac{3}{2},m \ne  - 1\)
Phương pháp giải

Cho hai đường thẳng \(d:y = ax + b\left( {a \ne 0} \right)\) và \(d':y = a'x + b'\left( {a' \ne 0} \right)\) nếu \(a \ne a'\) thì \(d\) và \(d'\) cắt nhau.

Lời giải của GV Loigiaihay.com

Để \(d\) và \(d'\) cắt nhau thì \(m \ne 3 - 2m\).

Suy ra \(m \ne 1\).

Vậy với \(m \ne 0,m \ne \frac{3}{2},m \ne 1\) thì \(d\) và \(d'\) cắt nhau.

Đáp án C.

Đáp án : C