Đề bài
Cho hai đường thẳng \(d:y = mx - \left( {2m + 2} \right)\) và \(d':y = \left( {3 - 2m} \right)x + 1\) với \(m \ne 0\) và \(m \ne \frac{3}{2}\) Tìm giá trị của \(m\) để \(d\) và \(d\) ' cắt nhau.
-
A.
\(m \ne 1\)
-
B.
\(m \ne 0,m \ne \frac{3}{2}\)
-
C.
\(m \ne 0,m \ne \frac{3}{2},m \ne 1\)
-
D.
\(m \ne 0,m \ne \frac{3}{2},m \ne - 1\)
Phương pháp giải
Cho hai đường thẳng \(d:y = ax + b\left( {a \ne 0} \right)\) và \(d':y = a'x + b'\left( {a' \ne 0} \right)\) nếu \(a \ne a'\) thì \(d\) và \(d'\) cắt nhau.
Lời giải của GV Loigiaihay.com
Để \(d\) và \(d'\) cắt nhau thì \(m \ne 3 - 2m\).
Suy ra \(m \ne 1\).
Vậy với \(m \ne 0,m \ne \frac{3}{2},m \ne 1\) thì \(d\) và \(d'\) cắt nhau.
Đáp án C.
Đáp án : C