Đề bài

Có bao nhiêu giá trị nguyên của a để hàm số \(y = {\left( { - {a^2} + 2a + 4} \right)^x}\) đồng biến trên \(\mathbb{R}\)?

  • A.
    1.
  • B.
    2.
  • C.
    3.
  • D.
    4.
Phương pháp giải

Cho hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\):

+ Nếu \(a > 1\) thì hàm số đồng biến trên \(\mathbb{R}\).

+ Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \(\mathbb{R}\).

Lời giải của GV Loigiaihay.com

Hàm số \(y = {\left( { - {a^2} + 2a + 4} \right)^x}\) đồng biến trên \(\mathbb{R}\) khi:

\( - {a^2} + 2a + 4 > 1 \Leftrightarrow  - {a^2} + 2a + 3 > 0 \Leftrightarrow {a^2} - 2a - 3 < 0 \Leftrightarrow \left( {a + 1} \right)\left( {a - 3} \right) < 0 \Leftrightarrow  - 1 < a < 3\)

Mà a là số nguyên nên \(a \in \left\{ {0;1;2} \right\}\).

Vậy có 3 giá trị nguyên của a để hàm số \(y = {\left( { - {a^2} + 2a + 4} \right)^x}\) đồng biến trên \(\mathbb{R}\).

Đáp án C.

Đáp án : C