Đề bài
Cho a là số dương, rút gọn biểu thức \(\frac{{\sqrt a .\sqrt[3]{{{a^2}}}}}{{\sqrt[4]{a}}}\) được kết quả là:
-
A.
\(\sqrt[{12}]{{{a^{11}}}}\).
-
B.
\(\sqrt[{121}]{a}\).
-
C.
\(\sqrt[{11}]{{{a^{12}}}}\).
-
D.
\(\sqrt[3]{{{a^4}}}\).
Phương pháp giải
+ Cho số thực dương a và số hữu tỉ \(r = \frac{m}{n}\), trong đó \(m,n \in \mathbb{Z},n > 0\). Ta có: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\)
+ Với a là số thực dương, m, n là các số thực bất kì thì: \({a^m}.{a^n} = {a^{m + n}},{a^m}:{a^n} = {a^{m - n}}\).
Lời giải của GV Loigiaihay.com
\(\frac{{\sqrt a .\sqrt[3]{{{a^2}}}}}{{\sqrt[4]{a}}} = \frac{{{a^{\frac{1}{2}}}.{a^{\frac{2}{3}}}}}{{{a^{\frac{1}{4}}}}} = {a^{\frac{1}{2} + \frac{2}{3} - \frac{1}{4}}} = {a^{\frac{{11}}{{12}}}} = \sqrt[{12}]{{{a^{11}}}}\)
Đáp án A.
Đáp án : A