Cho hàm số: \(y = \log \left[ {\left( {m - 2} \right){x^2} + 2\left( {m + 1} \right)x + 2m} \right]\).
a) Với \(m = 3\), hãy tìm tập xác định của hàm số trên.
b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định với mọi giá trị thực của x.
Hàm số \(y = \log u\left( x \right)\) xác định khi \(u\left( x \right) > 0\).
a) Với \(m = 3\) ta có: \(y = \log \left( {{x^2} + 8x + 6} \right)\).
Hàm số \(y = \log \left( {{x^2} + 8x + 6} \right)\) xác định khi \({x^2} + 8x + 6 > 0 \Leftrightarrow \left[ \begin{array}{l}x > - 4 + \sqrt {10} \\x < - 4 - \sqrt {10} \end{array} \right.\)
Vậy với \(m = 3\) thì tập xác định của hàm số là: \(D = \left( { - \infty ; - 4 - \sqrt {10} } \right) \cup \left( { - 4 + \sqrt {10} ; + \infty } \right)\).
b) Hàm số \(y = \log \left[ {\left( {m - 2} \right){x^2} + 2\left( {m + 1} \right)x + 2m} \right]\) xác định với mọi giá trị thực của x khi và chỉ khi \(f\left( x \right) = \left( {m - 2} \right){x^2} + 2\left( {m + 1} \right)x + 2m > 0\) với mọi \(x \in \mathbb{R}\)
Trường hợp 1: Với \(m = 2\) ta có: \(f\left( x \right) = 6x + 4 > 0 \Leftrightarrow x > \frac{{ - 2}}{3}\).
Do đó, f(x) không xác định với mọi giá trị thực của x. Do đó, \(m = 2\) không thỏa mãn.
Trường hợp 2: Với \(m \ne 2\).
Hàm số \(f\left( x \right) = \left( {m - 2} \right){x^2} + 2\left( {m + 1} \right)x + 2m > 0\) với mọi \(x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ \begin{array}{l}m - 2 > 0\\\Delta ' = {\left( {m + 1} \right)^2} - \left( {m - 2} \right)2m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 2\\ - {m^2} + 6m + 1 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 2\\\left[ \begin{array}{l}m < 3 - \sqrt {10} \\m > 3 + \sqrt {10} \end{array} \right.\end{array} \right. \Leftrightarrow m > 3 + \sqrt {10} \)
Vậy với \(m \in \left( {3 + \sqrt {10} ; + \infty } \right)\) thì hàm số \(y = \log \left[ {\left( {m - 2} \right){x^2} + 2\left( {m + 1} \right)x + 2m} \right]\) có tập xác định với mọi giá trị thực của x.
Các bài tập cùng chuyên đề
Khẳng định nào sau đây là đúng?
Chọn đáp án đúng.
Cho số thực a và số nguyên dương n \(\left( {n \ge 2} \right)\). Số b được gọi là căn bậc n của số a nếu:
Chọn đáp án đúng:
Rút gọn biểu thức \(\left( {{9^{3 + \sqrt 3 }} - {9^{\sqrt 3 - 1}}} \right){.3^{ - 2\sqrt 3 }}\) được kết quả là:
Cho a, b là các số thực dương. Rút gọn biểu thức \(\frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^8}}}{{\sqrt[3]{{\sqrt {{a^{12}}{b^6}} }}}}\)
Chọn đáp án đúng.
Chọn đáp án đúng.
Cho a, b là các số thực dương. Giá trị của \(\ln \frac{a}{b} + \ln \frac{b}{a}\) bằng:
Chọn đáp án đúng.
Cho \(a > 0,a \ne 1,b > 0\). Với mọi số nguyên dương \(n \ge 2\) ta có:
Cho \({\log _a}b = 4\). Giá trị của \({\log _a}\left( {{a^3}{b^2}} \right)\) bằng:
Cho hai số thực dương a, b thỏa mãn \({a^3}{b^2} = 1000\). Giá trị của biểu thức \(P = 3\log a + 2\log b\) là:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên \(\left( {0; + \infty } \right)\)?
Hàm số nào dưới đây là hàm số đồng biến trên \(\mathbb{R}\)?
Đồ thị hàm số \(y = {6^{2x}}\) luôn đi qua điểm nào dưới đây?
Chọn đáp án đúng.
Hàm số \(y = \log x\) có cơ số là:
Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số \(y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\) thể hiện ở hình vẽ dưới đây.
Khẳng định nào dưới đây là đúng?
Tập xác định của hàm số \(y = \frac{1}{{\sqrt {3 - x} }} + \ln \left( {x - 1} \right)\) là:
Bất phương trình \({6^x} \ge b\) có tập nghiệm là \(\mathbb{R}\) khi:
Tập nghiệm của bất phương trình \({\left( {\frac{1}{\pi }} \right)^x} > {\left( {\frac{1}{\pi }} \right)^3}\) là:
Tập nghiệm của bất phương trình \(\log x \ge 2\) là:
Cho phương trình \({4^x} + {2^{x + 2}} - 5 = 0\). Đặt \(t = {2^x}\) ta được phương trình là: