Đề bài

Cho phương trình \(3{\log _8}\left[ {2{x^2} - \left( {m + 3} \right)x + 1 - m} \right] + {\log _{\frac{1}{2}}}\left( {{x^2} - x + 1 - 3m} \right) = 0\) (m là tham số). Có bao nhiêu giá trị nguyên của m để phương trình đã cho có hai nghiệm phân biệt \({x_1};{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| < 15\)?

Phương pháp giải :

Nếu \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết :

Điều kiện: \({x^2} - x + 1 - 3m > 0\left( * \right)\)

\(3{\log _8}\left[ {2{x^2} - \left( {m + 3} \right)x + 1 - m} \right] + {\log _{\frac{1}{2}}}\left( {{x^2} - x + 1 - 3m} \right) = 0\)

\( \Leftrightarrow {\log _2}\left[ {2{x^2} - \left( {m + 3} \right)x + 1 - m} \right] = {\log _2}\left( {{x^2} - x + 1 - 3m} \right)\)

\( \Leftrightarrow 2{x^2} - \left( {m + 3} \right)x + 1 - m = {x^2} - x + 1 - 3m \Leftrightarrow {x^2} - \left( {m + 2} \right)x + 2m = 0\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x = m\\x = 2\end{array} \right.\)

Phương trình đã cho có hai nghiệm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt thỏa mãn (*)

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - m + 1 - 3m > 0\\{2^2} - 2 + 1 - 3m > 0\\m \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4m + 1 > 0\\3 - 3m > 0\end{array} \right. \Leftrightarrow m < 2 - \sqrt 3 \left( {**} \right)\)

Theo giả thiết:

\(\left| {{x_1} - {x_2}} \right| < 15 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} < 225 \Leftrightarrow {\left( {m + 2} \right)^2} - 4.2m < 225\)

\( \Leftrightarrow {m^2} - 4m - 221 < 0 \Leftrightarrow  - 13 < m < 17\left( {***} \right)\)

Từ (**) và (***) ta có: \( - 13 < m < 2 - \sqrt 3 \).

Mà m là số nguyên nên \(m \in \left\{ { - 12; - 11;...;0} \right\}\). Vậy có 13 giá trị của m thỏa mãn bài toán.