Đề bài

Cho hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\). Biết rằng: \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = M,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = m\). Khi đó:

  • A.
    \(M.m = 2\).
  • B.
    \(M.m =  - 1\).
  • C.
    \(M.m = 4\).
  • D.
    \(M.m = 1\).
Phương pháp giải

Cho hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\):

+ Nếu \(a > 1\) thì hàm số đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).

Lời giải của GV Loigiaihay.com

Hàm số \(y = f\left( x \right) = {\log _{\frac{1}{{\sqrt 3 }}}}x\) có \(0 < \frac{1}{{\sqrt 3 }} < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\).

Do đó, \(\mathop {\max }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( {\frac{1}{3}} \right) = {\log _{\frac{1}{{\sqrt 3 }}}}\frac{1}{3} = 2,\mathop {\min }\limits_{x \in \left[ {\frac{1}{3};3} \right]} y = f\left( 3 \right) = {\log _{\frac{1}{{\sqrt 3 }}}}3 =  - 2\)

Do đó, \(M.m =  - 1\)

Đáp án B.

Đáp án : B