Một khu đất hình chữ nhật có chiều dài và chiều rộng tỉ lệ với 8 và 5. Diện tích khu đất đó bằng \(360{m^2}\). Tính chiều dài và chiều rộng của khu đất đó.
Áp dụng tính chất của dãy tỉ số bằng nhau và công thức tính diện tích hình chữ nhật để tìm chiều dài và chiều rộng của khu đất đó.
Gọi chiều dài và chiều rộng của khu đất lần lượt là \(x,y\left( {x > y > 0} \right)\) \(\left( m \right)\).
Vì chiều dài và chiều rộng tỉ lệ với 8 và 5 nên ta có:
\(\frac{x}{8} = \frac{y}{5} = k\left( {k > 0} \right)\) suy ra \(x = 8k;y = 5k\).
Mà diện tích khu đất bằng \(360{m^2}\) nên ta có \(x.y = 360\) hay \(8k.5k = 360\)
\(\begin{array}{l}40{k^2} = 360\\{k^2} = 9\end{array}\)
\(k = 3\) (vì \(k > 0\))
Từ đó suy ra:
\(\begin{array}{l}x = 8.3 = 24\\y = 5.3 = 15\end{array}\)(thỏa mãn)
Vậy chiều dài và chiều rộng của khu đất đó lần lượt là \(24m\) và \(15m\).
Các bài tập cùng chuyên đề
Trong các cặp tỉ số sau, cặp tỉ số nào lập thành một tỉ lệ thức?
Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}.\) Khẳng định đúng là
Từ đẳng thức \(2.\left( { - 15} \right) = \left( { - 5} \right).6\), ta có thể lập được tỉ lệ thức nào?
Cho \(x,y\) là hai đại lượng tỉ lệ nghịch với nhau, biết \({x_1},{y_1}\) và \({x_2},{y_2}\) là các cặp giá trị tương ứng của chúng. Khẳng định nào sau đây là sai?
Nếu ba số \(a;{\rm{ }}b;{\rm{ }}c\) tương ứng tỉ lệ với \(2;5;7\) ta có dãy tỉ số bằng nhau là:
Cho đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số tỉ lệ \(k = - 3.\) Hệ thức liên hệ của \(y\) và \(x\) là:
Biểu thức nào là đa thức một biến?
Trong hình vẽ bên, có điểm \(C\) nằm giữa \(B\) và \(D\). So sánh \(AB;AC;AD\) ta được
Trong các bộ ba đoạn thẳng sau đây. Bộ gồm ba đoạn thẳng nào là độ dài ba cạnh của một tam giác?
Cho đại lượng y tỉ lệ thuận với đại lượng x. Khi \(x = 4\) thì \(y = 16\) . Vậy hệ số tỉ lệ bằng
Biểu thức biểu thị chu vi của hình chữ nhật có chiều dài \(8cm\) và chiều rộng \(6cm\) là
Đường vuông góc kẻ từ H xuống đường thẳng m là:
a) Tìm x biết \(\frac{6}{x} = \frac{{ - 4}}{5}\).
b) Tìm \(x;y\) biết: \(\frac{x}{5} = \frac{y}{3}\) và \(x + 2y = 33\).
c) Tìm a, b, c tỉ lệ với ba số 2; 3; -4 và a + b – c = 18.
Số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21; 20; 22. Tính số học sinh của mỗi lớp, biết rằng lớp 7C có nhiều hơn lớp 7A là 2 học sinh.
Cho tam giác ABC cân tại A. Từ A kẻ AH vuông góc với BC tại H, trên đoạn thẳng AH lấy điểm M tùy ý (M khác A và H). Chứng minh rằng:
a) BH = CH.
b) BA > BM.
Cho tam giác ABC có trung tuyến AM. Chứng minh rằng \(AB + AC > 2AM\).