Đề bài

a) Tìm x biết \(\frac{6}{x} = \frac{{ - 4}}{5}\).

b) Tìm \(x;y\) biết: \(\frac{x}{5} = \frac{y}{3}\) và \(x + 2y = 33\).

c) Tìm a, b, c tỉ lệ với ba số 2; 3; -4 và a + b – c = 18.

Phương pháp giải

a) Dựa vào tính chất của tỉ lệ thức để tìm x.

b, c) Sử dụng tính chất của dãy tỉ số bằng nhau để tìm ẩn.

Lời giải của GV Loigiaihay.com

a) Ta có:

\(\begin{array}{l}\frac{6}{x} = \frac{{ - 4}}{5}\\6.5 =  - 4.x\\ - 4x = 30\\x = \frac{{ - 30}}{4} = \frac{{ - 15}}{2}\end{array}\)

Vậy \(x = \frac{{ - 15}}{2}\).

b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{5} = \frac{y}{3} = \frac{{x + 2y}}{{5 + 2.3}} = \frac{{33}}{{11}} = 3\)

Từ đó suy ra:

\(\begin{array}{l}x = 3.5 = 15\\y = 3.3 = 9\end{array}\)

Vậy x = 15; y = 9.

c) Ta có a, b, c tỉ lệ với ba số 2; 3; -4 nên ta có dãy tỉ số bằng nhau:

\(\frac{a}{2} = \frac{b}{3} = \frac{c}{{ - 4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{2} = \frac{b}{3} = \frac{c}{{ - 4}} = \frac{{a + b - c}}{{2 + 3 - \left( { - 4} \right)}} = \frac{{18}}{9} = 2\)

Từ đó suy ra:

\(\begin{array}{l}a = 2.2 = 4\\b = 2.3 = 6\\c = 2.\left( { - 4} \right) =  - 8\end{array}\)

Vậy \(a = 4;b = 6;c =  - 8\).