Cho tam giác ABC vuông tại A (AB > AC), đường cao AH. Từ B kẻ tia \(Bx \bot AB\), tia Bx cắt AH tại K.
a) Tứ giác ABKC là hình gì? Tại sao?
b) Chứng minh $\Delta ABK\backsim \Delta CHA$. Từ đó suy ra \(AB.AC = AK.CH\).
c) Chứng minh \(A{H^2} = HB.HC\).
d) Giả sử \(BH = 9cm,HC = 16cm\). Tính AB, AH.
a) Chứng minh tứ giác ABKC có hai cạnh đối song song nên là hình thang và có một góc vuông nên là hình thang vuông.
b) Chứng minh $\Delta ABK\backsim \Delta CHA\left( g.g \right)$ suy ra tỉ số giữa các cạnh trong hai tam giác để chứng minh $AB.AC=AK.CH$.
c) Chứng minh $\Delta AHB\backsim \Delta CHA\left( g.g \right)$ để chứng minh $A{{H}^{2}}=HB.HC$.
d) Áp dụng $A{{H}^{2}}=HB.HC$ để tính AH, định lí Pythagore để tính AB.
a) Ta có: \(AC \bot AB\left( {gt} \right),BK \bot AB\left( {gt} \right)\) \( \Rightarrow AC//BK\) nên tứ giác ABKC là hình thang.
Mà \(\widehat A = \widehat B = {90^0}\) nên ABKC là hình thang vuông.
b) Vì AC // BK nên \(\widehat {CAH} = \widehat {AKB}\) (hai góc so le trong)
Xét \(\Delta ABK\) và \(\Delta CHA\) có:
\(\widehat B = \widehat H\left( { = {{90}^0}} \right)\)
\(\widehat {CAH} = \widehat {AKB}\) (cmt)
$\Rightarrow \Delta ABK\backsim \Delta CHA\left( g.g \right)$ (đpcm)
\( \Rightarrow \frac{{AB}}{{AK}} = \frac{{CH}}{{CA}} \Rightarrow AB.CA = AK.CH\) (đpcm)
c) Ta có:
\(\left. \begin{array}{l}\widehat {HAC} + \widehat {ACH} = {90^0}\\\widehat {ABC} + \widehat {ACH} = {90^0}\end{array} \right\} \Rightarrow \widehat {HAC} = \widehat {ABC}\)
Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat {AHB} = \widehat {CHA}\left( { = {{90}^0}} \right)\)
\(\widehat {HAC} = \widehat {ABC}\)
$\Rightarrow \Delta AHB\backsim \Delta CHA\left( g.g \right)$
\( \Rightarrow \frac{{AH}}{{BH}} = \frac{{CH}}{{AH}} \Rightarrow A{H^2} = BH.CH\) (đpcm)
d) Ta có: \(A{H^2} = BH.CH = 9.16 = 144 = {12^2}\)
\( \Rightarrow AH = 12\left( {cm} \right)\)
Áp dụng định lí Pythagore vào tam giác vuông AHB, ta có:
\(\begin{array}{l}A{B^2} = A{H^2} + H{B^2} = {12^2} + {9^2} = 225\\ \Rightarrow AB = 15\left( {cm} \right)\end{array}\)
Vậy AH = 12cm, AB = 15cm.
Các bài tập cùng chuyên đề
Phân thức bằng với phân thức \(\frac{x}{{x - 1}}\) là:
Phân thức nghịch đảo của phân thức \(\frac{{x - y}}{{x + y}}\) là:
Giá trị của phân thức \(\frac{{{x^2} + 4x + 4}}{{{x^2} + 2x}}\) khi \(x = - 2\) là:
Kết quả phép tính \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 4}}{{x - 1}}\) là
Cho hình vẽ dưới đây, biết AB // DE. Giá trị của x là:
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AB, N là trung điểm của BC. Biết AB = 3cm, BC = 5cm. Khi đó MN bằng:
Một sân chơi có hình tam giác như hình dưới. Kích thước ba cạnh của sân lần lượt là 300m, 350m và 550m. Phía ngoài sân chơi có một con đường tạo thành một tam giác đồng dạng với sân chơi. Biết cạnh ngắn nhất của con đường là 450m. Tổng chiều dài của con đường đó là:
Cho $\Delta ABC\backsim \Delta MNP$ theo tỉ số đồng dạng 3. Gọi H, K lần lượt là trung điểm của AC, MP. Tỉ số \(\frac{{BH}}{{NK}}\) bằng
Thực hiện phép tính:
a) \(\frac{1}{{x + 1}} + \frac{2}{{1 - x}} + \frac{{5x - 1}}{{{x^2} - 1}}\)
b) \(\frac{{2x + 6}}{{{x^3} - 8}}:\frac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\)
Cho hai biểu thức \(P = \frac{{{x^2} - 2}}{{{x^2} + 2x}} + \frac{1}{{x + 2}}\), \(Q = \frac{{x + 1}}{x}\) (với \(x \ne 0\); \(x \ne - 2\); \(x \ne - 1\))
a) Tính giá trị của Q khi \(x = - 3\).
b) Rút gọn P.
c) Tìm \(x\) để \(P:Q = \frac{5}{2}\).
d) Tìm \(x\) nguyên để \(P\) có giá trị nguyên.
Bóng của một tháp trên mặt đất có độ dài BC = 63m. Cùng thời điểm đó, một cây cột DE cao 2 mét cắm vuông góc với mặt đất có bóng dài 3 mét. Tính chiều cao của tháp?
Chứng minh rằng:
Nếu \(x = by + cz\); \(y = ax + cz\); \(z = ax + by\) và \(x + y + z \ne 0\) thì \(\frac{1}{{1 + a}} + \frac{1}{{1 + b}} + \frac{1}{{1 + c}} = 2\).