Đề bài

Cho tứ giác ABCD có \(AB = CD\). Gọi M là trung điểm của BC. Gọi (P) là mặt phẳng đi qua M song song với AB và CD. Thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) là hình gì?

Phương pháp giải

Sử dụng kiến thức về giao tuyến của hai mặt phẳng: Nếu hai mặt phẳng chứa hai đường thẳng song song với nhau thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

Lời giải của GV Loigiaihay.com

Vì (P) qua M và song song với AB nên \(\left( P \right) \cap \left( {ABC} \right) = MN\), với N là giao điểm của đường thẳng qua M song song với AB và cạnh AC.

Vì (P) qua N và song song với CD nên \(\left( P \right) \cap \left( {ACD} \right) = NP\), với P là giao điểm của đường thẳng qua N song song với CD và cạnh AD.

Vì (P) qua M và song song với CD nên \(\left( P \right) \cap \left( {BCD} \right) = MQ\), với Q là giao điểm của đường thẳng qua M song song với CD và cạnh BD.

Do đó, thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) là tứ giác MNPQ.

Ta có: MN//PQ, \(MN = PQ = \frac{1}{2}AB\), MQ//PN, \(MQ = PN = \frac{1}{2}DC\), \(AB = CD\)

Do đó, \(MN = NP = PQ = QM\) nên tứ giác MNPQ là hình thoi.

Các bài tập cùng chuyên đề

Bài 1 :

Xét góc lượng giác \(\left( {OA,OM} \right) = \alpha \), trong đó M là điểm không nằm trên các trục tọa độ Ox và Oy. Khi đó, M thuộc góc phần tư nào để \(\sin \alpha \) và \(\cos \alpha \) trái dấu?

Xem lời giải >>
Bài 2 :

Cho \({90^0} < \alpha  < {180^0}\). Chọn khẳng định đúng:

Xem lời giải >>
Bài 3 :

Trong các giá trị sau, \(\sin \alpha \) không thể nhận giá trị nào?

Xem lời giải >>
Bài 4 :

Chọn phát biểu đúng:

Xem lời giải >>
Bài 5 :

Tập xác định của hàm số \(y = 2\sin x\) là:

Xem lời giải >>
Bài 6 :

Chọn khẳng định đúng:

Xem lời giải >>
Bài 7 :

Dãy số \(\left( {{u_n}} \right)\) gồm các số nguyên dương chia hết cho 5. Số nào dưới đây thuộc dãy số \(\left( {{u_n}} \right)\)?

Xem lời giải >>
Bài 8 :

Cấp số cộng nào dưới đây có công sai bằng 3?

Xem lời giải >>
Bài 9 :

Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 2\). Tính \(\mathop {\lim }\limits_{n \to  + \infty } \left( {{u_n} - 6} \right)\)

Xem lời giải >>
Bài 10 :

Phát biểu nào sau đây là sai?

Xem lời giải >>
Bài 11 :

Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) liên tục tại điểm \({x_o}\). Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại điểm \({x_o}\) nếu:

Xem lời giải >>
Bài 12 :

Giá trị của \(\mathop {\lim }\limits_{x \to  + \infty } {x^5}\) là:

Xem lời giải >>
Bài 13 :

Một mặt phẳng được xác định nếu mặt phẳng đó chứa:

Xem lời giải >>
Bài 14 :

Cho hình chóp S. ABCD với ABCD là hình bình hành. Hai điểm S và B cùng thuộc hai mặt phẳng:

Xem lời giải >>
Bài 15 :

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải >>
Bài 16 :

Cho hình hộp ABCD. A’B’C’D’. Hình hộp đó có bao nhiêu mặt bên?

Xem lời giải >>
Bài 17 :

Khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 18 :

Qua phép chiếu song song, tính chất nào không được bảo toàn?

Xem lời giải >>
Bài 19 :

Biết rằng \(\tan \alpha  = 2\). Giá trị biểu thức \(\frac{{\sin \alpha  + 2\cos \alpha }}{{3\sin \alpha  - \cos \alpha }}\) \(\left( {\cos \alpha  \ne 0} \right)\)là:

Xem lời giải >>
Bài 20 :

Cho tam giác ABC. Chọn đáp án đúng:

Xem lời giải >>