Đề bài

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{{x - 1}} - \frac{3}{{{x^3} - 1}}\,\;khi\;x > 1\\mx + 3\;\;\;\;\;\;\;\;\;\;\;khi\;x \le 1\;\end{array} \right.\). Tìm m để hàm số liên tục trên \(\mathbb{R}\).

Phương pháp giải

Sử dụng kiến thức về hàm số liên tục: Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này.

Lời giải của GV Loigiaihay.com

Tập xác định: \(D = \mathbb{R}\)

Khi \(x \in \left( { - \infty ;1} \right)\): Hàm số \(f\left( x \right) = mx + 3\) liên tục trên \(\left( { - \infty ;1} \right)\).

Khi \(x \in \left( {1; + \infty } \right)\): Hàm số \(f\left( x \right) = \frac{1}{{x - 1}} - \frac{3}{{{x^3} - 1}}\) liên tục trên \(\left( {1; + \infty } \right)\).

Tại \(x = 1\):

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{1}{{x - 1}} - \frac{3}{{{x^3} - 1}}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + x + 1 - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + x - 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x + 2}}{{{x^2} + x + 1}} = \frac{3}{3} = 1\)

\(\mathop {\lim }\limits_{x \to {1^ - }} \left( {mx + 3} \right) = m + 3\), \(f\left( 1 \right) = m + 3\)

Hàm số f(x) liên tục trên \(\mathbb{R}\) \( \Leftrightarrow \) hàm số f(x) liên tục tại \(x = 1\)\( \Leftrightarrow \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\)

Tức là: \(m + 3 = 1 \Leftrightarrow m =  - 2\)

Các bài tập cùng chuyên đề

Bài 1 :

Xét góc lượng giác \(\left( {OA,OM} \right) = \alpha \), trong đó M là điểm không nằm trên các trục tọa độ Ox và Oy. Khi đó, M thuộc góc phần tư nào để \(\sin \alpha \) và \(\cos \alpha \) trái dấu?

Xem lời giải >>
Bài 2 :

Cho \({90^0} < \alpha  < {180^0}\). Chọn khẳng định đúng:

Xem lời giải >>
Bài 3 :

Trong các giá trị sau, \(\sin \alpha \) không thể nhận giá trị nào?

Xem lời giải >>
Bài 4 :

Chọn phát biểu đúng:

Xem lời giải >>
Bài 5 :

Tập xác định của hàm số \(y = 2\sin x\) là:

Xem lời giải >>
Bài 6 :

Chọn khẳng định đúng:

Xem lời giải >>
Bài 7 :

Dãy số \(\left( {{u_n}} \right)\) gồm các số nguyên dương chia hết cho 5. Số nào dưới đây thuộc dãy số \(\left( {{u_n}} \right)\)?

Xem lời giải >>
Bài 8 :

Cấp số cộng nào dưới đây có công sai bằng 3?

Xem lời giải >>
Bài 9 :

Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 2\). Tính \(\mathop {\lim }\limits_{n \to  + \infty } \left( {{u_n} - 6} \right)\)

Xem lời giải >>
Bài 10 :

Phát biểu nào sau đây là sai?

Xem lời giải >>
Bài 11 :

Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) liên tục tại điểm \({x_o}\). Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại điểm \({x_o}\) nếu:

Xem lời giải >>
Bài 12 :

Giá trị của \(\mathop {\lim }\limits_{x \to  + \infty } {x^5}\) là:

Xem lời giải >>
Bài 13 :

Một mặt phẳng được xác định nếu mặt phẳng đó chứa:

Xem lời giải >>
Bài 14 :

Cho hình chóp S. ABCD với ABCD là hình bình hành. Hai điểm S và B cùng thuộc hai mặt phẳng:

Xem lời giải >>
Bài 15 :

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải >>
Bài 16 :

Cho hình hộp ABCD. A’B’C’D’. Hình hộp đó có bao nhiêu mặt bên?

Xem lời giải >>
Bài 17 :

Khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 18 :

Qua phép chiếu song song, tính chất nào không được bảo toàn?

Xem lời giải >>
Bài 19 :

Biết rằng \(\tan \alpha  = 2\). Giá trị biểu thức \(\frac{{\sin \alpha  + 2\cos \alpha }}{{3\sin \alpha  - \cos \alpha }}\) \(\left( {\cos \alpha  \ne 0} \right)\)là:

Xem lời giải >>
Bài 20 :

Cho tam giác ABC. Chọn đáp án đúng:

Xem lời giải >>