Đề bài

Cho các đoạn thẳng \(AB = 8{\rm{ cm, }}CD = 6{\rm{ cm, }}MN = 12{\rm{ cm, }}PQ = x{\rm{ cm}}\) . Tìm \(x\) để \(AB\) và \(CD\) tỉ lệ với \(MN\) và \(PQ\) .

  • A.
    7 cm
  • B.
    8 cm
  • C.
    9 cm
  • D.
    10 cm
Phương pháp giải

Dựa vào định nghĩa hai đoạn thẳng tỉ lệ: Hai đoạn thẳng \(AB\) và \(CD\) gọi là tỉ lệ với hai đoạn thẳng \(A'B'\) và \(C'D'\) nếu có tỉ lệ thức: \(\frac{{AB}}{{CD}} = \frac{{A'B'}}{{C'D'}}\) hay \(\frac{{AB}}{{A'B'}} = \frac{{CD}}{{C'D'}}\) .

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}\frac{{AB}}{{CD}} = \frac{8}{6} = \frac{4}{3}\\\frac{{MN}}{{PQ}} = \frac{{12}}{x}\\\frac{{AB}}{{CD}} = \frac{{MN}}{{PQ}} \Leftrightarrow \frac{4}{3} = \frac{{12}}{x} \Leftrightarrow x = \frac{{12.3}}{4} = 9\end{array}\)

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Cho \(AB = 6\,{\rm{cm, }}AC = 18\,{\rm{cm}}\) , tỉ số hai đoạn thẳng \(AB\) và \(AC\) là:

Xem lời giải >>
Bài 2 :

Cho tam giác \(ABC\) như hình vẽ dưới đây. Hãy chọn khẳng định sai:

Xem lời giải >>
Bài 3 :

Cho các đoạn thẳng \(AB = 6\,{\rm{cm,}}\,CD = 4\,{\rm{cm,}}\,PQ = 8\,{\rm{cm,}}\,EF = 10\,{\rm{cm,}}\) \(MN = 25{\rm{ mm, }}RS = 15\,{\rm{mm}}\) . Hãy chọn các phát biểu đúng trong các phát biểu sau:

Xem lời giải >>
Bài 4 :

Cho hình vẽ sau. Có bao nhiêu cặp đường thẳng song song?

Xem lời giải >>
Bài 5 :

Cho điểm \(C\) thuộc đoạn thẳng \(AB\) thỏa mãn \(\frac{{AC}}{{BC}} = \frac{3}{5}\) . Tính tỉ số \(\frac{{AC}}{{AB}}\) .

Xem lời giải >>
Bài 6 :

Cho hình vẽ sau, biết \(DE // BC\) . \(AD = 8,\,DB = 6,\,CE = 9\) . Độ dài \(AC\) bằng?

Xem lời giải >>
Bài 7 :

Cho hình vẽ dưới dây. Tính \(OM\) .

Xem lời giải >>
Bài 8 :

Cho tam giác \(ABC\) có \(AB = 12{\rm{ cm}}\) , điểm \(D\) thuộc cạnh \(AB\) sao cho \(AD = 8{\rm{ cm}}\) . Kẻ \(DE\) song song với \(BC\,\left( {E \in AC} \right)\) , kẻ \(EF\) song song với \(CD\,\left( {F \in AB} \right)\) . Tính độ dài \(AF\) .

Xem lời giải >>
Bài 9 :

Cho tứ giác \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Đường thẳng qua \(A\) và song song với \(BC\) cắt \(BD\) ở \(E\) . Đường thẳng qua \(B\) song song với \(AD\) cắt \(AC\) ở \(F\) . Chọn kết luận sai?

Xem lời giải >>
Bài 10 :

Cho tứ giác \(ABCD\) . Lấy điểm \(E\) bất kì thuộc \(BD\) . Qua \(E\) kẻ \(EF\) song song với \(AD\left( {F \in AB} \right)\) , kẻ \(EG\) song song với \(DC\,\left( {G \in BC} \right)\) . Chọn khẳng định sai:

Xem lời giải >>
Bài 11 :

Cho điểm \(M\) thuộc đoạn thẳng \(AB\) sao cho \(MA = 2MB\) . Vẽ về một phía của \(AB\) các tam giác đều \(AMC\) và \(MBD\) . Gọi \(E\) là giao điểm của \(AD\) và \(MC\) , \(F\) là giao điểm của \(BC\) và \(DM\) . Đặt \(MB = a\) . Tính \(ME,MF\) theo \(a\) .

Xem lời giải >>
Bài 12 :

Cho hình thang \(ABCD\left( {AB // CD} \right)\) có diện tích \(48\,{\rm{c}}{{\rm{m}}^2}\) , \(AB = 4\,{\rm{cm,}}\,CD = 8{\rm{cm}}\) . Gọi \(O\) là giao điểm của hai đường chéo. Tính diện tích tam giác \(COD\)

Xem lời giải >>
Bài 13 :

Cho hình thang \(ABCD\,\left( {AB // CD} \right)\) có \(BC = 18{\rm{ cm,}}\,AD = 12{\rm{ cm}}\) . Điểm \(E\) thuộc cạnh \(AD\) sao cho \(AE = 6{\rm{ cm}}\) . Qua \(E\) kẻ đường thẳng song song với \(CD\) , cắt \(BC\) ở \(F\) . Tính độ dài \(BF\) .

Xem lời giải >>
Bài 14 :

Cho hình thang \(ABCD\,\left( {AB // CD} \right)\) . Một đường thẳng song song với \(AB\) cắt các cạnh bên \(AD,\,BC\) theo thứ tự ở \(E,\,F\) . Đẳng thức nào sau đây đúng?

Xem lời giải >>
Bài 15 :

Cho tam giác \(ABC\) có \(AM\) là trung tuyến và điểm \(E\) thuộc đoạn thẳng \(MC\) . Qua \(E\) kẻ đường thẳng song song với \(AC\) , cắt \(AB\) ở \(D\) và cắt \(AM\) ở \(K\) . Qua \(E\) kẻ đường thẳng song song với \(AB\) , cắt \(AC\) ở \(F\) . Hãy chọn khẳng định sai.

Xem lời giải >>
Bài 16 :

Cho tứ giác \(ABCD\) . Qua \(E \in AD\) kẻ đường thẳng song song với \(DC\) cắt \(AC\) ở \(G\) . Qua \(G\) kẻ đường thẳng song song với \(CB\) cắt \(AB\) tại \(H\) . Qua \(B\) kẻ đường thẳng song song với \(CD\) , cắt đường thẳng \(AC\) tại \(I\) . Qua \(C\) kẻ đường thẳng song song với \(BA\) , cắt \(BD\) tại \(F\) . Khẳng định nào sau đây là sai?

Xem lời giải >>
Bài 17 :

Cho hình thang \(ABCD\left( {AB // CD} \right)\) . \(M\) là trung điểm của \(CD\) . Gọi \(I\) là giao điểm của \(AM\) và \(BD\) , \(K\) là giao điểm của \(BM\) và \(AC\) . Đường thẳng \(IK\) cắt \(AD,\,BC\) theo thứ tự ở \(E\) và \(F\) . Có bao nhiêu khẳng định đúng trong các khẳng định sau?

(I) \(IK // AB\)

(II) \(EI = IK = KF\)

(III) \(\frac{{DI}}{{BD}} = \frac{{IM}}{{AM}}\)

Xem lời giải >>
Bài 18 :

Cho tam giác \(ABC\) có đường cao \(AH\) . Trên \(AH\) lấy các điểm \(K,\,I\) sao cho \(AK = KI = IH\). Qua \(I,\,K\) lần lượt vẽ các đường thẳng \(EF // BC,\,MN // BC\) \(\left( {E,\,M \in AB;\,F,\,N \in AC} \right)\) . Cho biết diện tích của tam giác \(ABC\) là \(90\,{\rm{c}}{{\rm{m}}^2}\) . Hãy tính diện tích tứ giác \(MNF\) .

Xem lời giải >>
Bài 19 :

Cho đoạn thẳng \(ABC\) , điểm \(I\) nằm trong tam giác. Các tia \(AI,\,BI,CI\) cắt các cạnh \(BC,\,AC,\,AB\) theo thứ tự ở \(D,\,E,\,F\) . Tổng \(\frac{{AF}}{{FB}} + \frac{{AE}}{{EC}}\) bằng tỉ số nào dưới đây?

Xem lời giải >>