Đề bài

Trong hình vẽ bên dưới, các điểm A’, B’, C’, D’ lần lượt là trung điểm của các đoạn thẳng OA, OB, OC, OD.

Cho các khẳng định sau:

+ Hình thang ABCD và EFGH bằng nhau

+ Hình thang A’B’C’D và hình thang EFGH đồng dạng với nhau

+ Hình thang ABCD đồng dạng phối cảnh với hình thang A’B’C’D’

Có bao nhiêu khẳng định đúng?

  • A.
    0
  • B.
    1
  • C.
    2
  • D.
    3
Phương pháp giải
Sử dụng kiến thức về hai hình đồng dạng:

+ Hai hình H, H ’được gọi là đồng dạng nếu có hình H1 đồng dạng phối cảnh với hình H và bằng hình H’

+ Hình H đồng dạng với hình H’ nếu hình H’ bằng H hoặc bằng một hình phóng to hoặc thu nhỏ của H

- Sử dụng kiến thức về hình đồng dạng phối cảnh (hình vị tự):

+ Nếu với mỗi điểm M thuộc hình \(\mathcal{K}\), lấy điểm M’ thuộc tia OM sao cho \(OM' = k.OM\) (hay \(\frac{{OM'}}{{OM}} = k\)) thì các điểm M’ đó tạo thành hình \(\mathcal{K}'\). Ta nói hình \(\mathcal{K}'\) đồng dạng phối cảnh với hình \(\mathcal{K}\) theo tỉ số đồng dạng (vị tự) k. Khi đó, điểm O là tâm phối cảnh.

+ Nếu \(k > 1\) thì ta nói \(\mathcal{K}'\) là hình phóng to của hình \(\mathcal{K}\), nếu \(k < 1\) thì ta nói \(\mathcal{K}'\) là hình thu nhỏ của hình \(\mathcal{K}\)

Lời giải của GV Loigiaihay.com

Hình thang ABCD và EFGH bằng nhau.

Vì các điểm A’, B’, C’, D’ lần lượt là trung điểm của các đoạn thẳng OA, OB, OC, OD nên \(OA = 2OA',OB = 2OB',OC = 2OC',OD = 2OD'\).

Hình thang ABCD đồng dạng phối cảnh với hình thang A’B’C’D’.

Do đó, hình thang A’B’C’D và hình thang EFGH đồng dạng với nhau.

Vậy cả 3 khẳng định trên đều đúng

Đáp án : D