Đề bài
Cho tam giác ABC vuông tại A. Gọi M, N, P lần lượt là các trung điểm của AB, BC, AC và \(AM = \frac{1}{2}AB{;^{}}AP = \frac{1}{2}AC\). Tam giác ABC cần có thêm điều kiện gì để hình chữ nhật AMNP là hình vuông?
-
A.
\(AB = \frac{1}{2}AC\)
-
B.
\(AB = AC\)
-
C.
\(AC = \frac{1}{2}AB\)
-
D.
\(\widehat B = {60^o}\)
Phương pháp giải
Dựa vào dấu hiệu nhận biết của hình vuông
Lời giải của GV Loigiaihay.com
Hình chữ nhật AMNP là hình vuông ⇔ AM = AP
Vì: \(AM = \frac{1}{2}AB{;^{}}AP = \frac{1}{2}AC(gt)\) nên AM = AP ⇔ AB = AC
Vậy nếu tam giác ABC vuông cân tại A thì hình chữ nhật AMNP là hình vuông.
Đáp án : B