Đề bài
ho hình vuông ABCD. M là điểm nằm trong hình vuông. Gọi E, F lần lượt là hình chiếu của M trên cạnh AB và AD. Tứ giác AEMF là hình vuông khi.
-
A.
M trên đường chéo AC
-
B.
M thuộc cạnh DC
-
C.
M thuộc đường chéo BD
-
D.
M tùy ý nằm trong hình vuông ABCD
Phương pháp giải
Dựa vào dấu hiệu của hình vuông
Lời giải của GV Loigiaihay.com
Tứ giác AFME có: \(\widehat A = \widehat {AFM} = \widehat {A{\rm{E}}M} = {90^o}\) nên AEMF là hình chữ nhật
Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của góc \(\widehat {EAF}\)
Mà ta lại có: AC là phân giác \(\widehat {DAB}\) (do ABCD là hình vuông)
Nên suy ra M \( \in \) AC.
Đáp án : A