Có bao nhiêu đường thẳng đi qua A(4; 3), cắt trục tung tại điểm có tung độ là một số nguyên dương, cắt trục hoành tại điểm có hoành độ làm một số nguyên tố.
-
A.
Không có đường thẳng nào
-
B.
1 đường thẳng
-
C.
2 đường thẳng
-
D.
3 đường thẳng
Chứng minh dễ dàng được: Đường thẳng phải tìm cắt trục hoành tại điểm có hoành độ bằng a, cắt trục tung tại điểm có tung độ bằng b thì đường thẳng có dạng \(\frac{x}{a} + \frac{y}{b} = 1\)
Điểm A(4; 3) thuộc đường thẳng nên \(\frac{4}{a} + \frac{3}{b} = 1.\)
Do đó, \(b = \frac{{3a}}{{a - 4}} = 3 + \frac{{12}}{{a - 4}}\)
Do a là số nguyên tố nên \(a \ge 2,a - 4 \ge - 2\)
Lần lượt cho \(a - 4\) nhận các giá trị \( \pm 2; \pm 1;3;4;6;12\) với chú ý rằng a là số nguyên tố và \(b > 0\), ta tìm được \(\left\{ \begin{array}{l}a = 5\\b = 15\end{array} \right.\) và \(\left\{ \begin{array}{l}a = 7\\b = 7\end{array} \right.\)
Do đó ta tìm được hai đường thẳng \(\frac{x}{5} + \frac{y}{{15}} = 1\) (hay \(y = - 3x + 15\)) và \(\frac{x}{7} + \frac{y}{7} = 1\) (hay \(y = - x + 7\))
Đáp án : C
Các bài tập cùng chuyên đề
Trong các hình vẽ dưới đây, hình vẽ nào là đồ thị của hàm số \(y = 1 + 2x\)?
Cho đồ thị hàm số \(y = x + 1.\) Điểm nào dưới đây thuộc đồ thị hàm số trên?
Một người đi bộ trên đường thẳng với vận tốc v (km/h). Gọi s (km) là quãng đường đi được trong t (giờ). Khi đó, đồ thị của hàm số s theo biến t với \(v = 5\) đường thẳng nào trong hình vẽ dưới đây?
Cho đường thẳng d: \(y = 2x + m.\) Đường thẳng d đi qua điểm A(1; 5). Chọn đáp án đúng.
Cho hàm số bậc nhất \(y = \left( {2 - m} \right)x + m\). Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ 4.
Đồ thị của hàm số \(y = ax + b\left( {a \ne 0} \right)\) là:
Đồ thị hàm số \(y = ax + b\left( {a \ne 0} \right)\) là một đường thẳng cắt trục tung tại điểm có tung độ bằng:
Cho hai đường thẳng \({d_1}:y = x - 1\) và \({d_2}:y = 3 - 4x.\) Tung độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là:
Vẽ đồ thị các hàm số sau trên cùng một mặt phẳng tọa độ: \(y = x;y = x + 2;\)\(y = - x + 2;y = - x.\) Bốn đồ thị nói trên cắt nhau tại các điểm O(0; 0), A, B, C. Tứ giác có 4 đỉnh O, A, B, C là hình gì?
Cho hàm số \(y = mx + 2\) có đồ thị là đường thẳng \({d_1}\) và hàm số \(y = \frac{1}{2}x + 1\) có đồ thị là đường thẳng \({d_2}.\) Để đường thẳng \({d_1}\) và đường thẳng \({d_2}\) cắt nhau tại một điểm có hoành độ bằng 4 là:
Cho hàm số \(y = \left( {m - 1} \right)x - 1\) có đồ thị là đường thẳng \({d_1}\) và hàm số \(y = x + 1\) có đồ thị là đường thẳng \({d_2}.\) Để đường thẳng \({d_1}\) và đường thẳng \({d_2}\) cắt nhau tại một điểm có tung độ bằng 4 là:
Cho đường thẳng \({d_1}:y = - x + 3\) và \({d_2}:y = 4 - 3x.\) Gọi A và B lần lượt là giao điểm của \({d_1}\) và \({d_2}\) với trục hoành. Tổng hoành độ giao điểm của hai điểm A và B là:
Cho đường thẳng d: \(y = - 2x - 4.\) Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung. Diện tích tam giác OAB là:
Với giá trị nào của m thì ba đường thẳng \({d_1}:y = \left( {m - 1} \right)x - 3;{d_2}:y = 2x + 1;{d_3}:y = x - 3\) giao nhau tại một điểm?
Gọi \({d_1}\) là đồ thị của hàm số \(y = mx - 1\) và \({d_2}\) là đồ thị hàm số \(y = \frac{1}{2}x + 2\). Để M(2; 3) là giao điểm của \({d_1}\) và \({d_2}\) thì giá trị của m là:
Cho đường thẳng d được xác định bởi \(y = 2x + 10.\) Đường thẳng d’ đối xứng với đường thẳng d qua trục hoành là:
Cho đường thẳng d xác định bởi \(y = 2x + 4.\) Đường thẳng d’ đối xứng với đường thẳng d qua đường thẳng \(y = x\) là:
: Cho đường thẳng \(y = mx + m + 1\;\;\;\left( 1 \right)\) (m là tham số). Đường thẳng (1) luôn đi qua một điểm cố định mới mọi giá trị của m. Điểm cố định đó là:
Tìm x sao cho ba điểm A(x; 14), B(-5; 20), C(7; -16) thẳng hàng.
Hệ số góc của đường thẳng \(y = 2x + 1\) là: