Cho \(a,\,b,\,c,\,d\) thỏa mãn \(a + b + c + d = 0;\,ab + ac + bc = 1\). Rút gọn biểu thức \(A = \frac{{3\left( {ab - c{\rm{d}}} \right)\left( {bc - ad} \right)\left( {ca - bd} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}}\).
-
A.
-1
-
B.
1
-
C.
3
-
D.
-3
Từ điều kiện \(a + b + c + d = 0\) và \(ab + ac + bc = 1\) tính các đa thức \(ab - cd;\,bc - ad;\,ca - bd\) sau đó rút gọn biểu thức \(A\).
\(\begin{array}{l}a + b + c + d = 0 \Rightarrow a + b + c = - d\\ \Rightarrow ab - cd = ab + c\left( {a + b + c} \right) = ab + ac + bc + {c^2} = {c^2} + 1;\\bc - ad = bc + a\left( {a + b + c} \right) = bc + {a^2} + ab + ac = {a^2} + 1;\\ca - bd = ca + b\left( {a + b + c} \right) = ca + ba + {b^2} + bc = {b^2} + 1\end{array}\)
\( \Rightarrow A = \frac{{3\left( {ab - c{\rm{d}}} \right)\left( {bc - ad} \right)\left( {ca - bd} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}} = \frac{{3\left( {{c^2} + 1} \right)\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}} = 3\)
Đáp án : C