Đề bài

Quy đồng mẫu thức các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) ta được các phân thức lần lượt là:

  • A.
    \(\frac{1}{{{x^3} + 1}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} + x}}{{2\left( {{x^3} + 1} \right)}}\)
  • B.
    \(\frac{1}{{6\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
  • C.
    \(\frac{6}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
  • D.
    \(\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{6}{{6\left( {{x^3} + 1} \right)}}\)
Phương pháp giải

Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm các mẫu thức chung;

- Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó;

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải của GV Loigiaihay.com

Ta có: \({x^3} + 1 = \left( {x + 1} \right)\left( {{x^2} - x + 1} \right);\,3x + 3 = 3\left( {x + 1} \right);\,2{x^2} - 2x + 2 = 2\left( {{x^2} - x + 1} \right)\) và \(BCNN\left( {2;3} \right) = 6\) nên mẫu thức chung của các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) là \(6\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = 6\left( {{x^3} + 1} \right)\).

Nhân tử phụ của \(\frac{1}{{{x^3} + 1}}\) là \(6\). \( \Rightarrow \frac{1}{{{x^3} + 1}} = \frac{6}{{6\left( {{x^3} + 1} \right)}}\)

Nhân tử phụ của \(\frac{2}{{3x + 3}}\) là \(2\left( {{x^2} - x + 1} \right)\). \( \Rightarrow \frac{2}{{3x + 3}} = \frac{{2.2\left( {{x^2} - x + 1} \right)}}{{3\left( {x + 1} \right)2\left( {{x^2} - x + 1} \right)}} = \frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}}\)

Nhân tử phụ của \(\frac{x}{{2{x^2} - 2x + 2}}\) là \(3\left( {x + 1} \right)\). \( \Rightarrow \frac{x}{{2{x^2} - 2x + 2}} = \frac{{x.3\left( {x + 1} \right)}}{{2\left( {{x^2} - x + 1} \right)3\left( {x + 1} \right)}} = \frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai. Với đa thức\(B \ne 0\) ta có:

Xem lời giải >>
Bài 2 :

Phân thức  \(\frac{{{x^2} - 7x + 12}}{{{x^2} - 6x + 9}}\) (với \(x \ne 3\)) bằng với phân thức nào sau đây?

Xem lời giải >>
Bài 3 :

Mẫu thức chung của các phân thức \(\frac{5}{{2\left( {x - 3} \right)}},\,\frac{7}{{{{\left( {x - 3} \right)}^3}}}\)là?

Xem lời giải >>
Bài 4 :

Quy đồng mẫu thức các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được:

Xem lời giải >>
Bài 5 :

Cho \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\). Khi đó:

Xem lời giải >>
Bài 6 :

Đa thức nào sau đây là mẫu thức chung của các phân thức \(\frac{1}{{2 - x}},\,\frac{{2x + 1}}{{{{\left( {x - 2} \right)}^2}}},\,\frac{{3{x^2} - 1}}{{{x^2} + 4x + 4}}\)

Xem lời giải >>
Bài 7 :

Tìm \(x\) biết \({a^2}x + 2ax + 4 = {a^2}\) với \(a \ne 0;\,a \ne  - 2\).

Xem lời giải >>
Bài 8 :

Tính giá trị phân thức \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\) tại \(x = 1\).

Xem lời giải >>
Bài 9 :

Cho \(A = \frac{{2{a^2} + 8ab + 8{b^2}}}{{a + 2b}}\) và \(a + 2b = 5\). Khi đó:

Xem lời giải >>
Bài 10 :

Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{5}{{3x + 2}}\) có giá trị là một số nguyên?

Xem lời giải >>
Bài 11 :

Cho các phân thức \(\frac{{2x}}{{3 - 3x}};\,\frac{{5x - 4}}{{4x + 4}};\,\frac{{{x^2} + x + 1}}{{2\left( {{x^2} - 1} \right)}}\)

An nói rằng mẫu thức chung của các phân thức trên là \(2\left( {{x^2} - 1} \right)\)

Bình nói rằng mẫu thức chung của các phân thức trên là \(12\left( {x - 1} \right)\left( {x + 1} \right)\)

Chọn câu đúng?

Xem lời giải >>
Bài 12 :

Rút gọn phân thức \(A = \frac{{4|x - 3| - 2|x - 5|}}{{9{x^2} - 66x + 121}}\) biết \(3 < x < 5\)

Xem lời giải >>
Bài 13 :

Tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\)

Xem lời giải >>
Bài 14 :

Giá trị của biểu thức \(A = \frac{{\left( {2{x^2} + 2x} \right){{\left( {x - 2} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}}\) với \(x = \frac{1}{2}\) là

Xem lời giải >>
Bài 15 :

Với giá trị nào của \(x\) thì \(A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}}\) đạt giá trị nhỏ nhất?

Xem lời giải >>
Bài 16 :

Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên?

Xem lời giải >>
Bài 17 :

Tính giá trị của biểu thức \(A = \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {x - 2y} \right)}}{{{x^2} - 4xy + 4{y^2}}}\) tại \(x = 98\) và \(y = 1\)

Xem lời giải >>
Bài 18 :

Để có các phân thức có cùng mẫu, ta cần điền vào các chỗ trống \(\frac{{x + 3}}{{{x^2} + 8x + 15}} = \frac{{x - 3}}{{...}};\,\frac{{5x - 15}}{{{x^2} - 6x + 9}} = \frac{{...}}{{\left( {x - 3} \right)\left( {x + 5} \right)}}\). Các đa thức lần lượt là:

Xem lời giải >>
Bài 19 :

Cho \(a > b > 0\). Chọn câu đúng?

Xem lời giải >>
Bài 20 :

Với điều kiện nào thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?

Xem lời giải >>