Đề bài

Mẫu thức chung của các phân thức \(\frac{5}{{2\left( {x - 3} \right)}},\,\frac{7}{{{{\left( {x - 3} \right)}^3}}}\)là?

  • A.
    \({\left( {x - 3} \right)^3}\)
  • B.
    \(x - 3\)
  • C.
    \(2{\left( {x - 3} \right)^4}\)
  • D.
    \(2{\left( {x - 3} \right)^3}\)
Phương pháp giải

Chọn mẫu thức chung (MTC) của hai mẫu thức bằng cách lấy tích của các nhân tử được chọn như sau:

- Nhân tử bằng số của MTC là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã cho (nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số ở MTC là BCNN của chúng);

- Với mỗi lũy thừa của cùng một biểu thức có mặt trong các mẫu thức, ta chọn lũy thừa với số mũ cao nhất.

Lời giải của GV Loigiaihay.com

Mẫu thức của hai phân thức \(\frac{5}{{2\left( {x - 3} \right)}},\,\frac{7}{{{{\left( {x - 3} \right)}^3}}}\) là \(2\left( {x - 3} \right)\) và \({\left( {x - 3} \right)^3}\) nên mẫu thức chung có phần hệ số là 2, phần biến số là \({\left( {x - 3} \right)^3}\).

\( \Rightarrow \)Mẫu thức chung là \(2{\left( {x - 3} \right)^3}\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai. Với đa thức\(B \ne 0\) ta có:

Xem lời giải >>
Bài 2 :

Phân thức  \(\frac{{{x^2} - 7x + 12}}{{{x^2} - 6x + 9}}\) (với \(x \ne 3\)) bằng với phân thức nào sau đây?

Xem lời giải >>
Bài 3 :

Quy đồng mẫu thức các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được:

Xem lời giải >>
Bài 4 :

Cho \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\). Khi đó:

Xem lời giải >>
Bài 5 :

Đa thức nào sau đây là mẫu thức chung của các phân thức \(\frac{1}{{2 - x}},\,\frac{{2x + 1}}{{{{\left( {x - 2} \right)}^2}}},\,\frac{{3{x^2} - 1}}{{{x^2} + 4x + 4}}\)

Xem lời giải >>
Bài 6 :

Quy đồng mẫu thức các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) ta được các phân thức lần lượt là:

Xem lời giải >>
Bài 7 :

Tìm \(x\) biết \({a^2}x + 2ax + 4 = {a^2}\) với \(a \ne 0;\,a \ne  - 2\).

Xem lời giải >>
Bài 8 :

Tính giá trị phân thức \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\) tại \(x = 1\).

Xem lời giải >>
Bài 9 :

Cho \(A = \frac{{2{a^2} + 8ab + 8{b^2}}}{{a + 2b}}\) và \(a + 2b = 5\). Khi đó:

Xem lời giải >>
Bài 10 :

Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{5}{{3x + 2}}\) có giá trị là một số nguyên?

Xem lời giải >>
Bài 11 :

Cho các phân thức \(\frac{{2x}}{{3 - 3x}};\,\frac{{5x - 4}}{{4x + 4}};\,\frac{{{x^2} + x + 1}}{{2\left( {{x^2} - 1} \right)}}\)

An nói rằng mẫu thức chung của các phân thức trên là \(2\left( {{x^2} - 1} \right)\)

Bình nói rằng mẫu thức chung của các phân thức trên là \(12\left( {x - 1} \right)\left( {x + 1} \right)\)

Chọn câu đúng?

Xem lời giải >>
Bài 12 :

Rút gọn phân thức \(A = \frac{{4|x - 3| - 2|x - 5|}}{{9{x^2} - 66x + 121}}\) biết \(3 < x < 5\)

Xem lời giải >>
Bài 13 :

Tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\)

Xem lời giải >>
Bài 14 :

Giá trị của biểu thức \(A = \frac{{\left( {2{x^2} + 2x} \right){{\left( {x - 2} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}}\) với \(x = \frac{1}{2}\) là

Xem lời giải >>
Bài 15 :

Với giá trị nào của \(x\) thì \(A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}}\) đạt giá trị nhỏ nhất?

Xem lời giải >>
Bài 16 :

Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên?

Xem lời giải >>
Bài 17 :

Tính giá trị của biểu thức \(A = \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {x - 2y} \right)}}{{{x^2} - 4xy + 4{y^2}}}\) tại \(x = 98\) và \(y = 1\)

Xem lời giải >>
Bài 18 :

Để có các phân thức có cùng mẫu, ta cần điền vào các chỗ trống \(\frac{{x + 3}}{{{x^2} + 8x + 15}} = \frac{{x - 3}}{{...}};\,\frac{{5x - 15}}{{{x^2} - 6x + 9}} = \frac{{...}}{{\left( {x - 3} \right)\left( {x + 5} \right)}}\). Các đa thức lần lượt là:

Xem lời giải >>
Bài 19 :

Cho \(a > b > 0\). Chọn câu đúng?

Xem lời giải >>
Bài 20 :

Với điều kiện nào thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?

Xem lời giải >>