Có bao nhiêu giá trị của \(x\) để phân thức \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}}\) có giá trị bằng 0?
-
A.
0
-
B.
1
-
C.
2
-
D.
3
Tìm điều kiện xác định của phân thức: Điều kiện xác định của phân thức \(\frac{A}{B}\) là điều kiện của biến để giá trị của mẫu thức \(B\) khác 0.
Dựa vào định nghĩa hai phân thức bằng nhau: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).
Điều kiện: \({x^2} - 2x + 1 \ne 0\)
\({\left( {x - 1} \right)^2} \ne 0\)
\(x - 1 \ne 0 \)
\(x \ne 1\)
Ta có:
\(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}} = 0\)
\({x^2} - 1 = 0\)
\({x^2} = 1\)
\(x = 1(L)\) hoặc \(x = - 1(TM)\)
Vậy có 1 giá trị thỏa mãn yêu cầu đề bài.
Đáp án : B
Các bài tập cùng chuyên đề
Biểu thức nào sau đây không là phân thức đại số?
Cặp phân thức nào sau đây bằng nhau?
Trong các cặp phân thức sau, cặp phân thức nào có mẫu giống nhau:
Với điều kiện nào của \(x\) thì phân thức \(\frac{{5{\rm{x}} - 7}}{{{x^2} - 9}}\) có nghĩa?
Phân thức \(\frac{{7x + 2}}{{5 - 3x}}\) có giá trị bằng \(\frac{{11}}{7}\) khi \(x\) bằng:
Chọn câu sai.
Phân thức nào sau đây không bằng với phân thức \(\frac{{3 - x}}{{3 + x}}\)?
Với điều kiện nào của \(x\) thì phân thức \(\frac{{{x^2}}}{{{x^2} + 4x + 5}}\) xác định?
Tìm \(a\) để \(\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\):
Tìm đa thức \(M\) thỏa mãn: \(\frac{M}{{2x - 3}} = \frac{{6{x^2} + 9x}}{{4{x^2} - 9}}\,\left( {x \ne \pm \frac{3}{2}} \right)\)
Hãy tìm phân thức \(\frac{P}{Q}\) thỏa mãn đẳng thức: \(\frac{{\left( {5x + 3} \right)P}}{{5x - 3}} = \frac{{\left( {2x - 1} \right)Q}}{{25{x^2} - 9}}\)
Với điều kiện nào của \(x\) thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?
Điều kiện để phân thức \(\frac{{2x - 5}}{3} < 0\) là?
Với \(x \ne y\), hãy viết phân thức \(\frac{1}{{x - y}}\) dưới dạng phân thức có tử là \({x^2} - {y^2}\)
Đưa phân thức \(\frac{{\frac{1}{3}x - 2}}{{{x^2} - \frac{4}{3}}}\) về phân thức có tử và mẫu là các đa thức với hệ số nguyên.
Tìm giá trị lớn nhất của phân thức \(A = \frac{{16}}{{{x^2} - 2x + 5}}\)
Cho \(a > b > 0\). Chọn câu đúng.
Cho \(4{a^2} + {b^2} = 5ab\) và \(2a > b > 0\). Tính giá trị của biểu thức \(A = \frac{{ab}}{{4{a^2} - {b^2}}}\).