Đề bài

Trong các cặp phân thức sau, cặp phân thức nào có mẫu giống nhau:

  • A.
    \(\frac{{x - 5}}{{{x^2} + 2}}\) và \(\frac{{x - 5}}{{x + 2}}\)
  • B.
    \(\frac{{3y}}{{7{y^2}}}\) và \(\frac{{6y}}{{14y}}\)
  • C.
    \(\frac{{5x}}{{4x + 6}}\) và \(\frac{{x + 3}}{{2\left( {2x + 3} \right)}}\)
  • D.
    \(\frac{{x + 1}}{{{x^2} + x + 1}}\) và \(\frac{{2x + 1}}{{{x^2} - x + 1}}\)
Phương pháp giải

Dựa vào khái niệm phân thức đại số: Một phân thức đại số (hay nói gọn là một phân thức) là một biểu thức có dạng \(\frac{A}{B}\), trong đó \(A,\,B\) là hai đa thức và \(B\) khác đa thức 0. \(A\) được gọi là tử thức (hoặc tử) và \(B\) được gọi là mẫu thức (hoặc mẫu).

Lời giải của GV Loigiaihay.com

\(\frac{{x - 5}}{{{x^2} + 2}}\) có mẫu là \({x^2} + 2\); \(\frac{{x - 5}}{{x + 2}}\) có mẫu là \(x + 2\)

Vì \({x^2} + 2 \ne x + 2\) nên \(\frac{{x - 5}}{{{x^2} + 2}}\) và \(\frac{{x - 5}}{{x + 2}}\) không có mẫu giống nhau

\(\frac{{3y}}{{7{y^2}}}\) có mẫu là \(7{y^2}\); \(\frac{{6y}}{{14y}}\) có mẫu là \(14y\)

Vì \(7{y^2} \ne 14y\) nên \(\frac{{3y}}{{7{y^2}}}\) và \(\frac{{6y}}{{14y}}\) không có mẫu giống nhau

\(\frac{{5x}}{{4x + 6}}\) có mẫu là \(4x + 6\); \(\frac{{x + 3}}{{2\left( {2x + 3} \right)}}\) có mẫu là \(2\left( {2x + 3} \right)\)

Vì \(4x + 6 = 2\left( {2x + 3} \right)\) nên \(\frac{{5x}}{{4x + 6}}\) và \(\frac{{x + 3}}{{2\left( {2x + 3} \right)}}\) có mẫu giống nhau

\(\frac{{x + 1}}{{{x^2} + x + 1}}\) có mẫu là \({x^2} + x + 1\); \(\frac{{2x + 1}}{{{x^2} - x + 1}}\) có mẫu là \({x^2} - x + 1\)

Vì \({x^2} + x + 1 \ne {x^2} - x + 1\) nên \(\frac{{x + 1}}{{{x^2} + x + 1}}\) và \(\frac{{2x + 1}}{{{x^2} - x + 1}}\) không có mẫu giống nhau

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Biểu thức nào sau đây không là phân thức đại số?

Xem lời giải >>
Bài 2 :

Cặp phân thức nào sau đây bằng nhau?

Xem lời giải >>
Bài 3 :

Với điều kiện nào của \(x\) thì phân thức \(\frac{{5{\rm{x}} - 7}}{{{x^2} - 9}}\) có nghĩa?

Xem lời giải >>
Bài 4 :

Phân thức \(\frac{{7x + 2}}{{5 - 3x}}\)  có giá trị bằng \(\frac{{11}}{7}\) khi \(x\) bằng:

Xem lời giải >>
Bài 5 :

Có bao nhiêu giá trị của \(x\) để phân thức \(\frac{{{x^2} - 1}}{{{x^2} - 2x + 1}}\) có giá trị bằng 0?

Xem lời giải >>
Bài 6 :

Chọn câu sai.

Xem lời giải >>
Bài 7 :

Phân thức nào sau đây không bằng với phân thức \(\frac{{3 - x}}{{3 + x}}\)?

Xem lời giải >>
Bài 8 :

Với điều kiện nào của \(x\) thì phân thức \(\frac{{{x^2}}}{{{x^2} + 4x + 5}}\) xác định?

Xem lời giải >>
Bài 9 :

Tìm \(a\) để \(\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\):

Xem lời giải >>
Bài 10 :

Tìm đa thức \(M\) thỏa mãn: \(\frac{M}{{2x - 3}} = \frac{{6{x^2} + 9x}}{{4{x^2} - 9}}\,\left( {x \ne  \pm \frac{3}{2}} \right)\)

Xem lời giải >>
Bài 11 :

Hãy tìm phân thức \(\frac{P}{Q}\) thỏa mãn đẳng thức: \(\frac{{\left( {5x + 3} \right)P}}{{5x - 3}} = \frac{{\left( {2x - 1} \right)Q}}{{25{x^2} - 9}}\)

Xem lời giải >>
Bài 12 :

Với điều kiện nào của \(x\) thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?

Xem lời giải >>
Bài 13 :

Điều kiện để phân thức \(\frac{{2x - 5}}{3} < 0\) là?

Xem lời giải >>
Bài 14 :

Với \(x \ne y\), hãy viết phân thức \(\frac{1}{{x - y}}\) dưới dạng phân thức có tử là \({x^2} - {y^2}\)

Xem lời giải >>
Bài 15 :

Đưa phân thức \(\frac{{\frac{1}{3}x - 2}}{{{x^2} - \frac{4}{3}}}\) về phân thức có tử và mẫu là các đa thức với hệ số nguyên.

Xem lời giải >>
Bài 16 :

Tìm giá trị lớn nhất của phân thức \(A = \frac{{16}}{{{x^2} - 2x + 5}}\)

Xem lời giải >>
Bài 17 :

Cho \(a > b > 0\). Chọn câu đúng.

Xem lời giải >>
Bài 18 :

Cho \(4{a^2} + {b^2} = 5ab\) và \(2a > b > 0\). Tính giá trị của biểu thức \(A = \frac{{ab}}{{4{a^2} - {b^2}}}\).

Xem lời giải >>