Đề bài

Hình dưới dây mô tả một đài phun nước. Tốc độ ban đầu của nước là 48 ft/s (ft là một đơn vị đo độ dài với 1ft=0,3048m). Tốc độ v(ft/s) của nước tại thời điểm t(s) được cho bởi công thức \(v = 48 - 30t.\) Thời gian để một giọt nước đi từ mặt đài phun nước đến khi đạt độ cao tối đa là:

  • A.
    1,8s
  • B.
    1,7s
  • C.
    1,6s
  • D.
    1,5s
Phương pháp giải
Sử dụng cách giải phương trình bậc nhất một ẩn.  
Lời giải của GV Loigiaihay.com

Khi xuất phát từ mặt đài phun nước, giọt nước có \(t = 0.\)

Khi giọt nước đạt độ cao tối đa thì \(v = 0.\) Thay vào công thức ta có:

\(0 = 48 - 30t\)

\(30t = 48\)

\(t = 1,6\)

Vậy thời gian để giọt nước đi từ mặt đài phun nước đến khi đạt độ cao tối đa là: \(1,6 - 0 = 1,6\) (s)

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình với ẩn x có dạng:

Xem lời giải >>
Bài 2 :

Phương trình nào dưới đây là phương trình một ẩn?

Xem lời giải >>
Bài 3 :

\({x_0}\) được gọi là nghiệm của phương trình \(A\left( x \right) = B\left( x \right)\) nếu:

Xem lời giải >>
Bài 4 :

Phương trình dạng \(ax + b = 0\), với a, b là hai số đã cho được gọi là phương trình bậc nhất một ẩn x khi:

Xem lời giải >>
Bài 5 :

Cho phương trình \(2x + 1 = 0\), chọn khẳng định đúng

Xem lời giải >>
Bài 6 :

Nghiệm của phương trình \(3x - 6 = 0\) là:

Xem lời giải >>
Bài 7 :

Nghiệm của phương trình \(\frac{3}{4} + \frac{2}{5}x = 0\) có dạng \(x =  - \frac{a}{b},\) trong đó \(b > 0\) và \(\frac{a}{b}\) là phân số tối giản. Khẳng định nào sau đây đúng?  

Xem lời giải >>
Bài 8 :

Ở một số quốc gia, người ta dùng cả hai đơn vị đo nhiệt độ là Fahrenheit (oF) và độ Celcius (oC), liên hệ với nhau bởi công thức \(C = \frac{5}{9}\left( {F - 32} \right).\) Khi ở 20 oC thì ứng với độ Fahrenheit là:

Xem lời giải >>
Bài 9 :

Biết rằng \(4x - 8 = 0\). Giá trị của biểu thức \(5{x^2} - 4\) là:  

Xem lời giải >>
Bài 10 :

Phương trình \({x^2} + 4 = 0\) có bao nhiêu nghiệm?

Xem lời giải >>
Bài 11 :

Tìm x, biết rằng nếu lấy x trừ đi \(\frac{1}{4},\) rồi nhân kết quả với \(\frac{1}{2}\) thì được \(\frac{1}{8}\)  

Xem lời giải >>
Bài 12 :

Gọi \({x_0}\) là nghiệm của phương trình \(3\left( {x - 5} \right) + 9x\left( {x - 3} \right) = 9{x^2}.\)

Hãy chọn đáp án đúng.

Xem lời giải >>
Bài 13 :

Cho \(A = \frac{{2\left( {x + 1} \right)}}{3} - \frac{1}{2},B = \frac{{1 + 3x}}{4}\). Tìm x để \(A = B\)  

Xem lời giải >>
Bài 14 :

Cho hai phương trình \(8\left( {x - 2} \right) = 14 + 6\left( {x - 1} \right) + 2\left( {x + 5} \right)\,\,\left( 1 \right)\) và \({\left( {x - 2} \right)^2} = {x^2} - 2x - 2\left( {x - 2} \right)\;\;\left( 2 \right)\)

Hãy chọn đáp án đúng.

Xem lời giải >>
Bài 15 :

Cho phương trình: \(\frac{{x - 11}}{{2011}} + \frac{{x - 10}}{{2012}} = \frac{{x - 74}}{{1948}} + \frac{{x - 72}}{{1950}}\).

Khẳng định nào sau đây đúng?  

Xem lời giải >>
Bài 16 :

Tìm điều kiện của m để phương trình \(3mx + m - 4x = 3{m^2} + 1\) có nghiệm duy nhất

Xem lời giải >>
Bài 17 :

Hình tam giác và hình chữ nhật ở hình dưới có cùng chu vi. Khi đó, giá trị của x là:

Xem lời giải >>
Bài 18 :

Cho hai phương trình \(\frac{{7x}}{8} - 5\left( {x - 9} \right) = \frac{1}{6}\left( {20x + 1,5} \right)\left( 1 \right)\) và \(2\left( {a - 1} \right)x - a\left( {x - 1} \right) = 2a + 3\;\left( 2 \right)\)

Để phương trình (2) có một nghiệm bằng một phần ba nghiệm của phương trình (1) thì giá trị của a là:

Xem lời giải >>
Bài 19 :

Phương trình \(\frac{{x + 1}}{3} + \frac{{3\left( {2x + 1} \right)}}{4} = \frac{{2x + 3\left( {x + 1} \right)}}{6} + \frac{{7 + 12x}}{{12}}\) có bao nhiêu nghiệm?  

Xem lời giải >>
Bài 20 :

Cho hình vẽ dưới đây. Biết rằng diện tích của cả hình đó bằng \(168{m^2}.\) Khi đó, giá trị của x (mét) là:  

Xem lời giải >>