Trong hình thang có hai góc tù:
-
A.
hai góc còn lại cũng là góc tù.
-
B.
hai góc còn lại là hai góc vuông.
-
C.
hai góc còn lại gồm một góc tù và một góc nhọn
-
D.
hai góc còn lại là hai góc nhọn.
Xét hình thang ABCD có AB // CD nên \(\widehat A + \widehat D = {180^o}\) (2 góc trong cùng phía) suy ra hai góc đó có nhiều nhất một góc nhọn, có nhiều nhất một góc tù.
Tương tự \(\widehat B\) và \(\widehat C\) cũng vậy.
Do đó trong bốn góc A, B, C, D có hai góc tù thì hai góc còn lại là hai góc nhọn.
Đáp án : D
Các bài tập cùng chuyên đề
Trong các khẳng định sau, khẳng định nào sai?
Hình thang cân là hình thang có
Số trục đối xứng của hình thang cân là
Tứ giác ABCD là hình thang vì có
Tứ giác ABCD có AB // CD là một hình thang, ta gọi
Trong các tứ giác sau,tứ giác nào là hình thang?
Cho hình vẽ, số đo \(\widehat {BC{{D}}}\) bằng:
Cho hình thang cân ABCD có AB // CD và AC = 12 cm, AB = 6 cm. Tình BD
Cho hình thang cân ABCD có AB // CD. Gọi M là giao điểm của AD và BC. Tam giác MCD là tam giác gì:
Cho hình thang ABCD có AB // CD, hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD. Tìm khẳng định sai trong các khẳng định sau:
Cho hình thang ABCD (AB // CD) ta có:
Hình thang cân có một góc bằng \({50^o}\) . Hiệu giữa hai góc kề một cạnh bên là:
Cho hình thang ABCD (AB //CD) biết \(\widehat A = {58^o}\) thì:
Tứ giác nào sau đây không phải hình thang:
Cho hình vẽ sau. Biết ABCD là hình thang cân (AB // CD).
Tìm khẳng định đúng trong các khẳng định sau:
Cho tam giác ABC. Các điểm D và E lần lượt trên các cạnh AB, AC sao cho
DE // BC. Tứ giác DBEC là hình thang cân nếu:
Cho hình thang cân ABCD (AB // CD) đáy nhỏ AB = 3 cm, đường cao
AH = 5 cm. Biết \(\widehat D = {45^o}\) . Độ dài đáy lớn CD là:
Cho hình vẽ sau, tính các góc A, C của hình thang ABCD (AB // CD) biết:
Hình thang ABCD (AB // CD) có các tia phân giác của \(\widehat A{,^{}}\widehat D\) cắt nhau tại M thì
Hình thang ABCD (AB // CD) biết \(\widehat A - \widehat D = {40^o},\widehat B = 3\widehat C\) . Các góc của hình thang là: