Giá trị lớn nhất của biểu thức \(\;Q = 8-8x-{x^2}\) là
-
A.
\(4\) .
-
B.
\( - 4\) .
-
C.
\(24\) .
-
D.
\(\; - 24\) .
Dấu = xảy ra khi \(A + B = 0\) .
Ta có \(\;Q = 8-8x-{x^2} = -{x^2}-8x - 16 + 16 + 8 = - \left( {{x^2} + 8x + 16} \right) + 24 = - {\left( {x + 4} \right)^2} + 24\)
Vì \({\left( {x + 4} \right)^2} \ge 0\) với mọi giá trị x nên \( - {\left( {x + 4} \right)^2} \le 0 \) với mọi giá trị x .
Do đó \(- {\left( {x + 4} \right)^2} + 24 \le 24\) với mọi x
Dấu = xảy ra khi \(x + 4 = 0\) hay \( x = - 4\) . Vậy giá trị lớn nhất của biểu thức Q là 24 khi \(x = - 4\) .
Đáp án : C
Các bài tập cùng chuyên đề
Chọn câu đúng?
Khai triển \({x^2} - {y^2}\) ta được
Đẳng thức nào sau đây là hằng đẳng thức?
Biểu thức \(4{x^2} - 4x + 1\) được viết dưới dạng hằng đẳng thức bình phương của một hiệu là
Viết biểu thức \(25{x^2} + 20xy + 4{y^2}\) dưới dạng bình phương của một tổng.
Cho biết \({99^2} = {a^2} - 2ab + {b^2}\) với \(a,\,b \in \mathbb{R}\) . Khi đó
Điền vào chỗ chấm trong khai triển hằng đẳng thức sau: \({\left( {... + 1} \right)^2} = \frac{1}{4}{x^2}{y^2} + xy + 1\) .
Rút gọn biểu thức \(P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\) ta được
Viết \({101^2} - {99^2}\) dưới dạng tích hoặc bình phương của một tổng (hiệu).
Tìm \(x\) biết \(\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9\)
Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {3x - 4} \right)^2} - {\left( {2x - 1} \right)^2} = 0\) .
So sánh \(P = 2015.2017.a\) và \(Q = {2016^2}.a \left( {a > 0} \right)\) .
Cho biết \({\left( {3x-1} \right)^2}\; + 2{\left( {x + 3} \right)^2}\; + 11\left( {1 + x} \right)\left( {1-x} \right) = ax + b\) . Khi đó
Cho \(M = \frac{{{{\left( {x + 5} \right)}^2} + {{\left( {x - 5} \right)}^2}}}{{{x^2} + 25}}; N = \frac{{{{\left( {2x + 5} \right)}^2} + {{\left( {5x - 2} \right)}^2}}}{{{x^2} + 1}}\) . Tìm mối quan hệ giữa \(M, N\) ?
Cho biểu thức \(T = {x^2} + 20x + 101\) . Khi đó
Cho biểu thức \(\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\) . Giá trị của biểu thức \(\;N\) khi \(\;x = 1001\) là
Biết giá trị \(x = a \left( {a > 0} \right)\) thỏa mãn biểu thức \(\;{\left( {2x + 1} \right)^2}\;-{\left( {x + {{ 5}}} \right)^2}\; = 0\) , bội của \(a\) là
Cho cặp số \(\left( {x;y} \right)\) để biểu thức \({{P }} = {x^2}-8x + {y^2} + 2y + 5\) có giá trị nhỏ nhất. Khi đó tổng \(x + 2y\) bằng
Giá trị nhỏ nhất của biểu thức \(A = {\left( {3x - 1} \right)^2} + {\left( {3x + 1} \right)^2} + 2\left( {9{x^2} + 7} \right)\) đạt tại \(x = b\) . Khi đó, căn bậc hai số học của \(b\) là
Cho biểu thức \(M = {79^2} + {77^2} + {75^2} + ... + {3^2} + {1^2}\) và \(N = {78^2} + {76^2} + {74^2} + ... + {4^2} + {2^2}\) . Tính giá trị của biểu thức \(\frac{{M - N}}{2}\) .