Đề bài

Với giá trị tự nhiên nào của \(n\) thì phép chia \(\left( {14{x^8}{y^4} - 9{x^{2n}}{y^6}} \right):\left( { - 2{x^7}{y^n}} \right)\) là phép chia hết?

  • A.

    \(\frac{7}{2} \le n \le 4\).

  • B.

    \(n = 4\).

  • C.

    \(n \ge \frac{7}{2}\).

  • D.

    \(n \ge 4\).

Phương pháp giải

Để \(\left( {14{x^8}{y^4} - 9{x^{2n}}{y^6}} \right):\left( { - 2{x^7}{y^n}} \right)\) là phép chia hết thì \(\left\{ \begin{array}{l}n \le 4\\2n \ge 7\end{array} \right.\)

Lời giải của GV Loigiaihay.com

Để \(\left( {14{x^8}{y^4} - 9{x^{2n}}{y^6}} \right):\left( { - 2{x^7}{y^n}} \right)\) là phép chia hết thì \(\left\{ \begin{array}{l}n \le 4\\2n \ge 7\end{array} \right.\)\( \Leftrightarrow \frac{7}{2} \le n \le 4\).

Mà \(n\) là số tự nhiên nên \(n = 4\).

Đáp án : B