Giá trị của biểu thức: \(A = \left[ {{{\left( {x - y} \right)}^5} + {{\left( {x - y} \right)}^4} + {{\left( {x - y} \right)}^3}} \right]:\left( {x - y} \right)\) với x= 3; y = 1 là:
-
A.
28
-
B.
16
-
C.
20
-
D.
14
Rút gọn giá trị của biểu thức A và thay các giá trị x, y vào biểu thức đã rút gọn.
Ta có:
\(\begin{array}{l}A = \left[ {{{\left( {x - y} \right)}^5} + {{\left( {x - y} \right)}^4} + {{\left( {x - y} \right)}^3}} \right]:\left( {x - y} \right)\\A = {\left( {x - y} \right)^4} + {\left( {x - y} \right)^3} + {\left( {x - y} \right)^2}\end{array}\)
Với x = 3; y = 1 ta có:
\(A = {\left( {3 - 1} \right)^4} + {\left( {3 - 1} \right)^3} + {\left( {3 - 1} \right)^2} = {2^4} + {2^3} + {2^2} = 28\)
Đáp án : A
Các bài tập cùng chuyên đề
Kết quả phép chia \(\left( {2{x^3} + 3{x^4} - 12{x^2}} \right):x\) là
Kết quả của phép chia \(\left( {3{x^3} + 2{x^2} + x} \right):(3x)\) là một đa thức có hệ số tự do là
Kết quả của phép chia \(\left[ {{{(x - y)}^3} - {{(x - y)}^2} + (x - y)} \right]:(y - x)\) là
Kết quả phép chia \(\left( {6{x^4}y + 4{x^3}{y^3} - 2xy} \right):(xy)\) là một đa thức có bậc bằng
Thực hiện phép chia \(\left( {2{x^4}y - 6{x^2}{y^7}} \right):\left( {2{x^2}} \right)\) ta được đa thức \(a{x^2}y + b{y^7}(a,b\) là hằng số). Khi đó \(a + b\) bằng
Đa thức \(7{x^3}{y^2}z - 2{x^4}{y^3}\) chia hết cho đơn thức nào dưới đây?
Kết quả phép tính \(\left( {7{x^4} - 3{x^5} + 2{x^2}} \right):\left( {\frac{3}{4}{x^2}} \right)\) là một đa thức có hệ số cao nhất bằng
Giá trị của biểu thức \(P = \left[ {{{(3ab)}^2} - 9{a^2}{b^4}} \right]:\left( {8a{b^2}} \right)\) tại \(a = \frac{2}{3};b = \frac{3}{2}\) là
Đa thức \(N\) thỏa mãn \( - 15{x^6}{y^5} - 20{x^4}{y^4} - 25{x^5}{y^3} = \left( { - 5{x^3}{y^2}} \right)N\) là
Tất cả các giá trị của \(x\) để \(\left( {2{x^4} - 3{x^3} + {x^2}} \right):\left( { - {x^2}} \right) + 4{(x - 1)^2} = 0\) là
Biểu thức \(D = \left( {9{x^2}{y^2} - 6{x^2}{y^3}} \right):{( - 3xy)^2} + \left( {6{x^5}y + 2{x^4}} \right):\left( {2{x^4}} \right)\) sau khi rút gọn là một đa thức có bậc bằng
Tính giá trị của biểu thức
D = \(\left( {15x{y^2}\; + {{ }}18x{y^3}\; + {{ }}16{y^2}} \right){{ }}:{{ }}6{y^2}\;-{{ }}7{x^4}{y^3}\;:{{ }}{x^4}y\) tại \(x = \frac{2}{3}{;^{}}y = 1\) là:
Giá trị của số tự nhiên thỏa mãn điều kiện gì để phép chia \({x^{n + 3}}{y^6}:{x^9}{y^n}\) là phép chia hết?
Chọn kết luận đúng về biểu thức:
\(E = \frac{2}{3}{x^2}{y^3}:\left( {\frac{{ - 1}}{3}xy} \right) + 2x\left( {y - 1} \right)\left( {y + 1} \right)\left( {x \ne 0;y \ne 0;y \ne 1} \right)\)
Tìm đơn thức B biết: \(\left( {B + 2{x^2}{y^3}} \right).\left( { - 3xy} \right) = - 3{x^2}{y^2} - 6{x^3}{y^4}\)
Một cửa hàng buổi sáng bán được xy bao gạo thì của hàng đó thu được số tiền là \({x^6}{y^5} - {x^5}{y^4}\) nghìn đồng. Tính số tiền mỗi bao gạo của cửa hàng đó đã bán khi x = 2; y = 2.
Cho \(P = \left( {75{x^5}{y^2} - 45{x^4}{y^3}} \right):\left( {3{x^3}{y^2}} \right) - \left( {\frac{5}{2}{x^2}{y^4} - 2x{y^5}} \right):\left( {\frac{1}{2}x{y^3}} \right)\). Khẳng định nào sai?
Với giá trị tự nhiên nào của \(n\) thì phép chia \(\left( {14{x^8}{y^4} - 9{x^{2n}}{y^6}} \right):\left( { - 2{x^7}{y^n}} \right)\) là phép chia hết?