Đề bài

Tất cả các giá trị của \(x\) để \(\left( {2{x^4} - 3{x^3} + {x^2}} \right):\left( { - {x^2}} \right) + 4{(x - 1)^2} = 0\) là

  • A.

    \(x \in \left\{ {1;\frac{3}{2}} \right\}\).

  • B.

    \(x \in \left\{ { - 1;\frac{3}{2}} \right\}\).

  • C.

    \(x \in \left\{ {1; - \frac{3}{2}} \right\}\).

  • D.

    \(x \in \left\{ { - 1; - \frac{3}{2}} \right\}\).

Phương pháp giải

Áp dụng quy tắc chia đa thức cho đơn thức để rút gọn vế trái sau đó tìm giá trị của \(x\).

Lời giải của GV Loigiaihay.com

\(\left( {2{x^4} - 3{x^3} + {x^2}} \right):\left( { - {x^2}} \right) + 4{(x - 1)^2} = 0\)

\(\begin{array}{l} \Leftrightarrow  - 2{x^2} + 3x - 1 + 4 \cdot \left( {{x^2} - 2x + 1} \right) = 0\\ \Leftrightarrow 2{x^2} - 5x + 3 = 0\\ \Leftrightarrow 2{x^2} - 2x - 3x + 3 = 0\\ \Leftrightarrow 2x(x - 1) - 3(x - 1) = 0\\ \Leftrightarrow (2x - 3)(x - 1) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{3}{2}}\\{x = 1}\end{array}} \right.\end{array}\)

Vậy \(x \in \left\{ {1;\frac{3}{2}} \right\}\).

Đáp án : A