Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left( {\dfrac{2}{3}x - \dfrac{4}{9}} \right)\left( {\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x} \right) = 0\,?\)
-
A.
$3$
-
B.
$0$
-
C.
$2$
-
D.
$1$
Sử dụng: \(A.B = 0\)
TH1: \(A = 0\)
TH2: \(B = 0\)
Ta có \(\left( {\dfrac{2}{3}x - \dfrac{4}{9}} \right)\left( {\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x} \right) = 0\,\)
TH1: \(\dfrac{2}{3}x - \dfrac{4}{9} = 0\)
\(\dfrac{2}{3}x = \dfrac{4}{9}\)
\(x = \dfrac{4}{9}:\dfrac{2}{3}\)
\(x = \dfrac{4}{9}.\dfrac{3}{2}\)
\(x = \dfrac{2}{3}\)
TH2: \(\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x = 0\)
\(\dfrac{{ - 3}}{7}:x = \dfrac{{ - 1}}{2}\)
\(x = \dfrac{{ - 3}}{7}:\left( {\dfrac{{ - 1}}{2}} \right)\)
\(x = \dfrac{6}{7}\)
Vậy có hai giá trị của \(x\) thỏa mãn là \(x = \dfrac{2}{3};x = \dfrac{6}{7}\) .
Đáp án : C
Các bài tập cùng chuyên đề
Nếu \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0} \right)\) thì tích \(x.y\) bằng
Kết quả của phép tính \( - \dfrac{6}{7}.\dfrac{{21}}{{12}}\) là
Thực hiện phép tính $\dfrac{5}{{11}}:\dfrac{{15}}{{22}}$ ta được kết quả là:
Kết quả của phép tính $\dfrac{3}{2}.\dfrac{4}{7}$ là
Số nào sau đây là kết quả của phép tính \(1\dfrac{4}{5}:\left( { - \dfrac{3}{4}} \right)\)
Cho \(A = \dfrac{{ - 5}}{6}.\dfrac{{12}}{{ - 7}}.\left( {\dfrac{{ - 21}}{{15}}} \right);\,B = \dfrac{1}{6}.\dfrac{9}{{ - 8}}.\left( {\dfrac{{ - 12}}{{11}}} \right)\) . So sánh \(A\) và \(B\).
Tìm \(x\) biết \(\dfrac{2}{3}x = - \dfrac{1}{{8}}.\)
Tìm số $x$ thoả mãn: \(x:\left( {\dfrac{2}{5} - 1\dfrac{2}{5}} \right) = 1.\)
Gọi ${x_0}$ là giá trị thỏa mãn \(\dfrac{5}{7}:x - \dfrac{2}{5} = \dfrac{1}{3}\). Chọn câu đúng.
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)?
Biểu thức \(P = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5}} \right):\dfrac{3}{7} + \left( {\dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}\) có giá trị là
Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{3}{7} + \dfrac{1}{7}:x = \dfrac{3}{{14}}\) và \({x_2}\) là giá trị thỏa mãn \(\dfrac{5}{7} + \dfrac{2}{7}:x = 1.\) Khi đó, chọn câu đúng.
Tìm $x$ , biết: $\left[ {\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2} \right]:\,\,3\,\, = \,\,2.$
Tính giá trị biểu thức: $A = \dfrac{{\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}}}{{\dfrac{8}{3} - \dfrac{8}{5} + \dfrac{8}{{10}}}} + \dfrac{1}{2}.$
Thực hiện phép tính \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\) ta được kết quả là
Nếu \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0}, y\ne 0 \right)\) thì \(x:y\) bằng: