Đề bài

Cho \(\Delta ABC\) cân tại $A,$  có \(\widehat A = {40^0}\), đường trung trực của $AB$  cắt $BC$  ở $D.$ Tính \(\widehat {CAD}\).

  • A.

    \({30^0}\) 

  • B.

    \({45^0}\)   

  • C.

    \({60^0}\)       

  • D.

    \({40^0}\).

Phương pháp giải

Áp dụng tính chất đường trung trực của đoạn thẳng, tính chất tam giác cân.

Lời giải của GV Loigiaihay.com

Vì \(\Delta ABC\) cân tại A (gt) \( \Rightarrow \widehat B = \widehat C = \left( {{{180}^0} - \widehat A} \right):2 = \left( {{{180}^0} - {{40}^0}} \right):2 = {70^0}.\)

Vì $D$  thuộc đường trung trực của $AB$  nên

 \( \Rightarrow AD = BD\) (tính chất đường trung trực của đoạn thẳng)

\( \Rightarrow \Delta ABD\) cân tại $D$ (dấu hiệu nhận biết tam giác cân)

$ \Rightarrow \widehat {DAC} + \widehat {CAB} = \widehat {DAB} = \widehat B = {70^0} \Rightarrow \widehat {DAC} = {70^0} - \widehat {CAB} = {70^0} - {40^0} = {30^0}.$

Đáp án : A