Cho tam giác \(ABC\), đường trung tuyến \(BD\). Trên tia đối của tia $DB$ lấy điểm \(E\) sao cho \(DE = DB.\) Gọi \(M,N\) theo thứ tự là trung điểm của \(BC;CE.\) Gọi \(I;K\) theo thứ tự là giao điểm của \(AM,AN\) với \(BE.\) Chọn câu đúng.
-
A.
\(BI = IK > KE\)
-
B.
\(BI > IK > KE\)
-
C.
\(BI = IK = KE\)
-
D.
\(BI < IK < KE\)
\(I\) là trọng tâm tam giác \(ABC\) nên \(BI = \dfrac{2}{3}BD = \dfrac{1}{3}BE\) \(\left( 1 \right)\)
\(K\) là trọng tâm tam giác \(ACE\) nên \(EK = \dfrac{2}{3}ED = \dfrac{1}{3}BE\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right);\left( 2 \right)\) suy ra \(IK = \dfrac{1}{3}BE\) từ đó \(BI = EK = IK\) .
Đáp án : C
Các bài tập cùng chuyên đề
Chọn câu sai.
Tam giác \(ABC\) có trung tuyến \(AM = 12\,cm\) và trọng tâm \(G\). Độ dài đoạn \(AG\) là
Cho \(G\) là trọng tâm của tam giác đều. Chọn câu đúng.
Cho tam giác \(ABC\) có hai đường trung tuyến \(BD;CE\) sao cho \(BD = CE\). Khi đó tam giác \(ABC\)
Cho tam giác \(ABC\), các đường trung tuyến \(BD\) và \(CE\). Chọn câu đúng.
Cho tam giác $MNP,$ hai đường trung tuyến $ME$ và $NF$ cắt nhau tại $O.$ Tính diện tích tam giác $MNP,$ biết diện tích tam giác $MNO$ là \(12c{m^2}\).
Cho tam giác \(ABC\) có hai đường phân giác \(CD\) và \(BE\) cắt nhau tại \(I.\) Khi đó
Cho \(\Delta ABC\), các tia phân giác của góc $B$ và $A$ cắt nhau tại điểm $O.$ Qua $O$ kẻ đường thẳng song song với $BC$ cắt $AB$ tại $M,$ cắt $AC$ ở $N.$ Cho $BM = 2cm,CN = 3cm.$ Tính $MN?$
Cho \(\Delta ABC\) cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khi đó ta có:
Cho tam giác \(ABC\) có: \(\widehat B = 2\widehat C,\) các đường phân giác của góc \(B\) và \(C\) cắt nhau tại \(I.\) Chọn câu đúng.