Cho \(\Delta ABC\) cân tại $A.$ Trên $BC$ lấy hai điểm $D$ và $E$ sao cho \(BD = DE = EC\). Chọn câu đúng.
-
A.
\(\widehat {BAD} = \widehat {EAC}\)
-
B.
\(\widehat {EAC} < \widehat {DAE}\)
-
C.
\(\widehat {BAD} < \widehat {DAE}\)
-
D.
Cả A, B, C đều đúng.
Áp dụng hai định lý:
- Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn
- Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
$AB = AC$ (gt)
\(\widehat B = \widehat C\) (tính chất tam giác cân)
\(BD = EC\left( {gt} \right)\)
\( \Rightarrow \Delta ABD = \Delta ACE\left( {c - g - c} \right)\)\( \Rightarrow \widehat {BAD} = \widehat {CAE}\) (2 góc tương ứng) nên A đúng.
Trên tia đối của tia $DA$ lấy điểm $F$ sao cho \(AD = DF\).
Xét \(\Delta ADE\) và \(\Delta FDB\) có:
\(AD = DF\left( {gt} \right)\)
\(\widehat {ADE} = \widehat {BDF}\) (đối đỉnh)
\(BD = DE\left( {gt} \right)\)
$ \Rightarrow \Delta ADE = \Delta FDB\left( {c - g - c} \right) \Rightarrow \left\{ \begin{array}{l}\widehat {DAE} = \widehat {BFD}\\AE = BF\end{array} \right.$
Ta có: \(\widehat {AEC} = \widehat B + \widehat {BAD}\) (tính chất góc ngoài của tam giác)
\( \Rightarrow \widehat {AEC} > \widehat B = \widehat C\) nên trong \(\Delta AEC\) suy ra \(AE < AC\) (quan hệ giữa góc và cạnh trong tam giác)
Mà \(\left\{ \begin{array}{l}AB = AC\left( {gt} \right)\\BF = AE\left( {cmt} \right)\end{array} \right. \Rightarrow BF < AB\)
Xét \(\Delta ABF\) có: \(BF < AB\left( {cmt} \right)\) suy ra \(\widehat {BFA} > \widehat {FAB}\) (quan hệ giữa cạnh và góc trong tam giác)
Vậy \(\widehat {BAD} = \widehat {CAE} < \widehat {DAE}\) nên B, C đúng.
Vậy cả A, B, C đều đúng.
Đáp án : D
Các bài tập cùng chuyên đề
Cho tam giác \(ABH\) vuông tại \(H\,\left( {\widehat A > \widehat B} \right).\) Kẻ đường cao \(HC\,\,\left( {C \in AB} \right).\) So sánh \(BH\) và \(AH;\,CH\) và \(CB.\)
-
A.
\(BH > AH;\,\,CB < CH\)
-
B.
\(BH > AH;\,\,CB > CH\)
-
C.
\(BH < AH;\,\,CB < CH\)
-
D.
\(BH < AH;\,\,CB > CH\)
Cho tam giác $ABC,$ biết \(\widehat A:\widehat B:\widehat C = 3:5:7.\) So sánh các cạnh của tam giác.
-
A.
\(AC < AB < BC\)
-
B.
\(BC > AC > AB\)
-
C.
\(BC < AC < AB\)
-
D.
\(BC = AC < AB\)
Cho tam giác $ABC$ cân ở $A$ có chu vi bằng $16cm,$ cạnh đáy $BC = 4cm.$ So sánh các góc của tam giác $ABC.$
-
A.
\(\widehat C = \widehat B > \widehat A\)
-
B.
\(\widehat A = \widehat B > \widehat C\)
-
C.
$\widehat C > \widehat B > \widehat A$
-
D.
\(\widehat C < \widehat B < \widehat A\)
Cho \(\Delta ABC\) có $AB > AC$ . Kẻ $BN$ là tia phân giác của góc $B$ \(\left( {N \in AC} \right)\). Kẻ $CM$ là tia phân giác của góc $C$\(\left( {M \in AB} \right)\), $CM$ và $BN$ cắt nhau tại $I.$ So sánh $IC$ và $IB?$
-
A.
\(IB < IC\)
-
B.
\(IC > IB\)
-
C.
\(IB = IC\)
-
D.
\(IB > IC\)
Cho \(\Delta ABC\) có \(AB < AC\) . Gọi $M$ là trung điểm của $BC.$ Trên tia đối của tia $MA$ lấy điểm $D$ sao cho $MA{\rm{ }} = {\rm{ }}MD$. So sánh \(\widehat {CDA}\) và \(\widehat {CAD}\) ?
-
A.
\(\widehat {CAD} > \widehat {CDA}\)
-
B.
\(\widehat {CAD} = \widehat {CDA}\)
-
C.
$\widehat {CAD} < \widehat {CDA}$
-
D.
\(\widehat {CDA} < \widehat {CAD}\)
Cho tam giác \(ABC\) có góc \(A\) tù. Trên cạnh \(AB\) lấy điểm \(E,\) trên cạnh \(AC\) lấy điểm \(F.\) Chọn câu đúng.
-
A.
\(BF > EF\)
-
B.
\(EF < BC\)
-
C.
\(BF < BC\)
-
D.
Cả A, B, C đều đúng
Cho tam giác \(ABC\) có \(\widehat C > \widehat B\) (\(\widehat B,\,\widehat C\) là các góc nhọn). Vẽ phân giác \(AD.\) So sánh \(BD\) và \(CD.\)
-
A.
Chưa đủ điều kiện để so sánh
-
B.
\(BD = CD\)
-
C.
\(BD < CD\)
-
D.
\(BD > CD\)
Cho \(\Delta ABC\) có \(\widehat A = {70}\), \(\widehat B - \widehat C = {30^0}\) . Em hãy chọn câu trả lời đúng nhất:
-
A.
\(AC < AB < BC\)
-
B.
\(AB < AC = BC\)
-
C.
\(BC < AC = AB\)
-
D.
\(AC < BC < AB\)
Cho \(\Delta ABC\) có \(AB + AC = 10cm,AC - AB = 4cm\). So sánh \(\widehat B\) và \(\widehat C\)?
-
A.
\(\widehat C < \widehat B\)
-
B.
$\widehat C > \widehat B$
-
C.
\(\widehat C = \widehat B\)
-
D.
\(\widehat B < \widehat C\)
Chọn câu trả lời đúng. Ba cạnh của tam giác có độ dài là \(6cm;\,7cm;\,8cm.\) Góc lớn nhất là góc
-
A.
đối diện với cạnh có độ dài \(6\,cm.\)
-
B.
đối diện với cạnh có độ dài \(7\,cm.\)
-
C.
đối diện với cạnh có độ dài \(8\,cm.\)
-
D.
Ba cạnh có độ dài bằng nhau.
Cho tam giác $ABC$ có \(\widehat B = {90^0}\), \(\widehat A = {35^0}\). Em hãy chọn câu trả lời đúng nhất.
-
A.
\(BC < AB < AC\)
-
B.
\(AC < AB < BC\)
-
C.
\(AC < BC < AB\)
-
D.
\(AB < BC < AC\)
Cho \(\Delta ABC\) có \(AC > BC > AB\). Trong các khẳng định sau, câu nào đúng?
-
A.
\(\widehat A > \widehat B > \widehat C\)
-
B.
\(\widehat C > \widehat A > \widehat B\)
-
C.
\(\widehat C < \widehat A < \widehat B\)
-
D.
\(\widehat A < \widehat B < \widehat C\)