Cho biết \(y\) tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\). Chọn câu đúng.
-
A.
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
-
B.
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_2}}}{{{k_1}}}\)
-
C.
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \({k_1}.{k_2}\)
-
D.
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
Áp dụng tính chất tỉ lệ nghịch và định nghĩa tỉ lệ thuận.
Vì \(y\)tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) nên \(y = \dfrac{{{k_1}}}{x}\).
Và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\) nên \(x = \dfrac{{{k_2}}}{z}\).
Thay \(x = \dfrac{{{k_2}}}{z}\) vào \(y = \dfrac{{{k_1}}}{x}\) ta được \(y = \dfrac{{{k_1}}}{{\dfrac{{{k_2}}}{z}}} = \dfrac{{{k_1}}}{{{k_2}}}z\).
Nên \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}.\)
Đáp án : D
Các bài tập cùng chuyên đề
Khi có \(y = \dfrac{a}{x}\) ta nói:
Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và \(y = \dfrac{a}{x}\). Gọi \({x_1};{x_2};{x_3};...\) là các giá trị của \(x\) và \({y_1};{y_2};{y_3};...\) là các giá trị tương ứng của \(y\). Ta có
Cho bảng sau:
x |
10 |
20 |
25 |
30 |
40 |
y |
10 |
5 |
4 |
\(\dfrac{{10}}{3}\) |
2,5 |
Khi đó:
Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\). Khi đó \({y_2} = ?\)
Để hoàn thành một công việc trong \(8\) giờ cần 35 công nhân. Nếu có \(40\)công nhân thì công việc đó được hoàn thành trong mấy giờ?
Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong \(4\) ngày, đội thứ hai trong \(7\) ngày và đội thứ \(3\) trong \(9\) ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có nhiều hơn đội thứ hai là \(3\) máy và công suất của các máy như nhau?
Để làm một công việc trong \(12\) giờ cần \(45\)công nhân. Nếu số công nhân tăng thêm \(15\) người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ?
Hai xe ô tô cùng đi từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai đi từ A đến B là 4 giờ. Tính thời gian xe thứ hai đi từ A đến B.