Một chiếc xe máy đi từ A về B và một chiếc ô tô đi từ B về A cùng khởi hành lúc 8 giờ. Biết quãng đường AB dài 120 km, vận tốc xe máy bằng \(\dfrac{2}{3}\) vận tốc ô tô. Tính quãng đường xe máy đi được cho đến lúc gặp nhau.
-
A.
48 km
-
B.
60 km
-
C.
72 km
-
D.
30 km
+ Với thời gian bằng nhau, vận tốc và quãng đường đi được là 2 đại lượng tỉ lệ thuận. Áp dụng tính chất 2 đại lượng tỉ lệ thuận
+ Hai xe đi ngược chiều trên quãng đường AB, khi gặp nhau thì tổng quãng đường 2 xe đi được là AB.
+ Áp dụng tính chất của dãy tỉ số bằng nhau.
Gọi quãng đường xe máy và ô tô đi được cho đến lúc gặp nhau lần lượt là x và y ( km) ( 0 < x, y < 120)
Vì 2 xe đi ngược chiều nên khi gặp nhau thì tổng quãng đường 2 xe đi được bằng quãng đường AB nên x + y = 120
Vì 2 xe cùng khởi hành một lúc nên thời gian 2 xe đi cho đến lúc gặp nhau là như nhau. Do đó vận tốc và quãng đường đi được là 2 đại lượng tỉ lệ thuận.
Do vận tốc xe máy bằng \(\dfrac{2}{3}\) vận tốc ô tô nên quãng đường xe máy đi được bằng \(\dfrac{2}{3}\) quãng đường ô tô đi được.
Do đó: x = \(\dfrac{2}{3}\). y hay \(\dfrac{x}{2} = \dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\begin{array}{l}\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{{x + y}}{{2 + 3}} = \dfrac{{120}}{5} = 24\end{array}\)
Suy ra \(x = 24.2 = 48;y = 24.3 = 72\)
Vậy quãng đường xe máy đi được cho đến lúc gặp nhau là 48 km.
Đáp án : A
Các bài tập cùng chuyên đề
Cho biết đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \( - 5\). Hãy biểu diễn \(y\) theo \(x\).
-
A.
\(y = \dfrac{1}{5}x\)
-
B.
\(y = - 5x\)
-
C.
\(y = 5x\)
-
D.
\(y = - \dfrac{1}{5}x\)
Cho đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(k\) . Khi \(x = 12\) thì \(y = - 3\).
Hệ số tỉ lệ là:
-
A.
\(k = - \dfrac{1}{4}\)
-
B.
\(k = - 4\)
-
C.
\(k = \dfrac{1}{4}\)
-
D.
\(k = 4\)
Cho biết x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \( - 3\). Cho bảng giá trị sau:
Khi đó:
-
A.
\({y_1} = \dfrac{4}{3};{x_2} = - 2;{y_3} = - 3\)
-
B.
\({y_1} = \dfrac{4}{3};{x_2} = - 2;{y_3} = - \dfrac{1}{3}\)
-
C.
\({y_1} = \dfrac{3}{4};{x_2} = - 2;{y_3} = - \dfrac{1}{3}\)
-
D.
\({y_1} = \dfrac{4}{3};{x_2} = 2;{y_3} = - \dfrac{1}{3}\)
Giả sử đại lượng x tỉ lệ thuận với đại lượng y , \({x_1},{x_2}\) là hai giá trị khác nhau của \(x\) ; \({y_1};{y_2}\) là hai giá trị tương ứng của \(y\). Tính \({x_1}\) biết \({x_2} = 3;{y_1} = \dfrac{{ - 3}}{5};{y_2} = \dfrac{1}{{10}}\).
-
A.
\({x_1} = - 18\)
-
B.
\({x_1} = 18\)
-
C.
\({x_1} = - 6\)
-
D.
\({x_1} = 6\)
Cho hai đại lượng \(x\) và \(y\) có bảng giá trị sau:
Kết luận nào sau đây đúng.
-
A.
x tỉ lệ thuận với y theo hệ số tỉ lệ \(\dfrac{{23}}{{48}}\)
-
B.
x tỉ lệ thuận với y theo hệ số \(\dfrac{9}{5}\)
-
C.
\(x\) và \(y\) không tỉ lệ thuận với nhau
-
D.
y tỉ lệ thuận với x theo hệ số tỉ lệ \(\dfrac{5}{9}\)
Giả sử \(x\) và \(y\)là hai đại lượng tỉ lệ thuận, \({x_1},{x_2}\) là hai giá trị khác nhau của \(x\) ; \({y_1};{y_2}\) là hai giá trị tương ứng của \(y\). Tính \({x_1};{y_1}\) biết \(2{y_1} + 3{x_1} = 24,{x_2} = - 6,{y_2} = 3.\)
-
A.
\({x_1} = 12;{y_1} = 6\)
-
B.
\({x_1} = - 12;{y_1} = - 6\)
-
C.
\({x_1} = 12;{y_1} = - 6\)
-
D.
\({x_1} = - 12;{y_1} = 6\)
Dùng \(10\) máy thì tiêu thụ hết \(80\) lít xăng. Hỏi dùng \(13\) máy (cùng loại) thì tiêu thụ hết bao nhiêu lít xăng?
-
A.
\(104\) lít
-
B.
\(140\) lít
-
C.
\(100\) lít
-
D.
\(96\) lít
Ba đơn vị cùng vận chuyển \(772\) tấn hàng. Đơn vị A có \(12\) xe, trọng tải mỗi xe là \(5\)tấn. Đơn vị B có \(14\) xe, trọng tải mỗi xe là \(4,5\) tấn. Đơn vị C có \(20\)xe, trọng tải mỗi xe là \(3,5\)tấn. Hỏi đơn vị B đã vận chuyển bao nhiêu tấn hàng, biết rằng mỗi xe được huy động một số chuyến như nhau?
-
A.
\(240\) tấn hàng
-
B.
\(280\) tấn hàng
-
C.
\(250\) tấn hàng
-
D.
\(252\) tấn hàng
Bốn lớp \(7{A_1};\,7{A_2};7{A_3};7{A_4}\) trồng được \(172\) cây xung quanh trường. Tính số cây của lớp \(7{A_4}\) đã trồng được biết số cây của lớp \(7{A_1}\) và \(7{A_2}\) tỉ lệ với \(3\) và \(4\), số cây của lớp \(7{A_2}\) và \(7{A_3}\) tỉ lệ với \(5\) và \(6\), số cây của lớp \(7{A_3}\) và \(7{A_4}\) tỉ lệ với \(8\) và \(9\).
-
A.
\(48\) cây
-
B.
\(40\) cây
-
C.
\(54\) cây
-
D.
\(30\) cây