Giả sử \(x\) và \(y\)là hai đại lượng tỉ lệ thuận, \({x_1},{x_2}\) là hai giá trị khác nhau của \(x\) ; \({y_1};{y_2}\) là hai giá trị tương ứng của \(y\). Tính \({x_1};{y_1}\) biết \(2{y_1} + 3{x_1} = 24,{x_2} = - 6,{y_2} = 3.\)
-
A.
\({x_1} = 12;{y_1} = 6\)
-
B.
\({x_1} = - 12;{y_1} = - 6\)
-
C.
\({x_1} = 12;{y_1} = - 6\)
-
D.
\({x_1} = - 12;{y_1} = 6\)
Áp dụng tính chất tỉ lệ thuận và tính chất dãy tỉ số bằng nhau
Vì \(x\) và \(y\) là hai đại lượng tỉ lệ thuận nên \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_1}}}{{{y_2}}}\) nên \(\dfrac{{{x_1}}}{{ - 6}} = \dfrac{{{y_1}}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{{{x_1}}}{{ - 6}} = \dfrac{{{y_1}}}{3} = \dfrac{{3{x_1}}}{{ - 18}} = \dfrac{{2{y_1}}}{6} = \dfrac{{3{x_1} + 2{y_1}}}{{ - 18 + 6}} = \dfrac{{24}}{{ - 12}} = - 2\)
Nên \({x_1} = \left( { - 2} \right).\left( { - 6} \right) = 12\); \({y_1} = \left( { - 2} \right).3 = - 6.\)
Đáp án : C
Các bài tập cùng chuyên đề
Cho biết đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \( - 5\). Hãy biểu diễn \(y\) theo \(x\).
Cho đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(k\) . Khi \(x = 12\) thì \(y = - 3\).
Hệ số tỉ lệ là:
Cho biết x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \( - 3\). Cho bảng giá trị sau:
\(x\) |
\( - 4\) |
\({x_2}\) |
\(1\) |
\(y\) |
\({y_1}\) |
\(\dfrac{2}{3}\) |
\({y_3}\) |
Khi đó:
Giả sử đại lượng x tỉ lệ thuận với đại lượng y , \({x_1},{x_2}\) là hai giá trị khác nhau của \(x\) ; \({y_1};{y_2}\) là hai giá trị tương ứng của \(y\). Tính \({x_1}\) biết \({x_2} = 3;{y_1} = \dfrac{{ - 3}}{5};{y_2} = \dfrac{1}{{10}}\).
Cho hai đại lượng \(x\) và \(y\) có bảng giá trị sau:
\(x\) |
2,3 |
4,8 |
-9 |
-6 |
-5 |
\(y\) |
4,8 |
2,3 |
-5 |
-6 |
-9 |
Kết luận nào sau đây đúng.
Dùng \(10\) máy thì tiêu thụ hết \(80\) lít xăng. Hỏi dùng \(13\) máy (cùng loại) thì tiêu thụ hết bao nhiêu lít xăng?
Một chiếc xe máy đi từ A về B và một chiếc ô tô đi từ B về A cùng khởi hành lúc 8 giờ. Biết quãng đường AB dài 120 km, vận tốc xe máy bằng \(\dfrac{2}{3}\) vận tốc ô tô. Tính quãng đường xe máy đi được cho đến lúc gặp nhau.
Ba đơn vị cùng vận chuyển \(772\) tấn hàng. Đơn vị A có \(12\) xe, trọng tải mỗi xe là \(5\)tấn. Đơn vị B có \(14\) xe, trọng tải mỗi xe là \(4,5\) tấn. Đơn vị C có \(20\)xe, trọng tải mỗi xe là \(3,5\)tấn. Hỏi đơn vị B đã vận chuyển bao nhiêu tấn hàng, biết rằng mỗi xe được huy động một số chuyến như nhau?
Bốn lớp \(7{A_1};\,7{A_2};7{A_3};7{A_4}\) trồng được \(172\) cây xung quanh trường. Tính số cây của lớp \(7{A_4}\) đã trồng được biết số cây của lớp \(7{A_1}\) và \(7{A_2}\) tỉ lệ với \(3\) và \(4\), số cây của lớp \(7{A_2}\) và \(7{A_3}\) tỉ lệ với \(5\) và \(6\), số cây của lớp \(7{A_3}\) và \(7{A_4}\) tỉ lệ với \(8\) và \(9\).