Đề bài

Giả sử đại lượng x tỉ lệ thuận với đại lượng y , \({x_1},{x_2}\) là hai giá trị khác nhau của \(x\) ; \({y_1};{y_2}\) là hai giá trị tương ứng của \(y\). Tính \({x_1}\) biết \({x_2} = 3;{y_1} = \dfrac{{ - 3}}{5};{y_2} = \dfrac{1}{{10}}\).

  • A.

    \({x_1} =  - 18\)

  • B.

    \({x_1} = 18\)

  • C.

    \({x_1} =  - 6\)

  • D.

    \({x_1} = 6\)

Phương pháp giải

Áp dụng tính chất tỉ lệ thuận

Lời giải của GV Loigiaihay.com

Vì đại lượng x tỉ lệ thuận với đại lượng y nên \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_1}}}{{{y_2}}}\) hay \(\dfrac{{{x_1}}}{3} = \dfrac{{\dfrac{{ - 3}}{5}}}{{\dfrac{1}{{10}}}} =  - 6 \) suy ra \({x_1} = -6.3 = - 18.\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho biết đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \( - 5\). Hãy biểu diễn \(y\) theo \(x\).

  • A.

    \(y = \dfrac{1}{5}x\)

  • B.

    \(y =  - 5x\)

  • C.

    \(y =  5x\)

  • D.

    \(y =  - \dfrac{1}{5}x\)

Xem lời giải >>
Bài 2 :

Cho đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(k\) . Khi \(x = 12\) thì \(y =  - 3\).

Hệ số tỉ lệ là:

  • A.

    \(k =  - \dfrac{1}{4}\)

  • B.

    \(k =  - 4\)

  • C.

    \(k = \dfrac{1}{4}\)

  • D.

    \(k = 4\)

Xem lời giải >>
Bài 3 :

Cho biết x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \( - 3\). Cho bảng giá trị sau:

Khi đó:

  • A.

    \({y_1} = \dfrac{4}{3};{x_2} =  - 2;{y_3} =  - 3\)

  • B.

    \({y_1} = \dfrac{4}{3};{x_2} =  - 2;{y_3} =  - \dfrac{1}{3}\)

  • C.

    \({y_1} = \dfrac{3}{4};{x_2} =  - 2;{y_3} =  - \dfrac{1}{3}\)          

  • D.

    \({y_1} = \dfrac{4}{3};{x_2} = 2;{y_3} =  - \dfrac{1}{3}\)

Xem lời giải >>
Bài 4 :

Cho hai đại lượng \(x\) và \(y\) có bảng giá trị sau:

Kết luận nào sau đây đúng.

  • A.

    x tỉ lệ thuận với y theo hệ số tỉ lệ \(\dfrac{{23}}{{48}}\) 

  • B.

    x tỉ lệ thuận với y theo hệ số  \(\dfrac{9}{5}\) 

  • C.

    \(x\) và \(y\) không tỉ lệ thuận với nhau

  • D.

    y tỉ lệ thuận với x theo hệ số tỉ lệ \(\dfrac{5}{9}\)

Xem lời giải >>
Bài 5 :

Giả sử \(x\) và \(y\)là hai đại lượng tỉ lệ thuận, \({x_1},{x_2}\) là hai giá trị khác nhau của \(x\) ; \({y_1};{y_2}\) là hai giá trị tương ứng của \(y\). Tính \({x_1};{y_1}\) biết \(2{y_1} + 3{x_1} = 24,{x_2} =  - 6,{y_2} = 3.\)

  • A.

    \({x_1} = 12;{y_1} = 6\)

  • B.

    \({x_1} =  - 12;{y_1} =  - 6\)

  • C.

    \({x_1} = 12;{y_1} =  - 6\)    

  • D.

    \({x_1} =  - 12;{y_1} = 6\)

Xem lời giải >>
Bài 6 :

Dùng \(10\) máy thì tiêu thụ hết \(80\) lít xăng. Hỏi dùng \(13\) máy (cùng loại) thì tiêu thụ hết bao nhiêu lít xăng?

  • A.

    \(104\) lít

  • B.

    \(140\) lít

  • C.

    \(100\) lít

  • D.

    \(96\) lít

Xem lời giải >>
Bài 7 :

Một chiếc xe máy đi từ A về B và một chiếc ô tô đi từ B về A cùng khởi hành lúc 8 giờ. Biết quãng đường AB dài 120 km, vận tốc xe máy bằng \(\dfrac{2}{3}\) vận tốc ô tô. Tính quãng đường xe máy đi được cho đến lúc gặp nhau.

  • A.

    48 km

  • B.

    60 km

  • C.

    72 km

  • D.

    30 km

Xem lời giải >>
Bài 8 :

Ba đơn vị cùng vận chuyển \(772\)  tấn hàng. Đơn vị A có \(12\)  xe, trọng tải mỗi xe là \(5\)tấn. Đơn vị B có \(14\)  xe, trọng tải mỗi xe là \(4,5\) tấn. Đơn vị C có \(20\)xe, trọng tải mỗi xe là \(3,5\)tấn. Hỏi đơn vị B đã vận chuyển bao nhiêu tấn hàng, biết rằng mỗi xe được huy động một số chuyến như nhau?

  • A.

    \(240\) tấn hàng

  • B.

    \(280\) tấn hàng

  • C.

    \(250\) tấn hàng

  • D.

    \(252\) tấn hàng

Xem lời giải >>
Bài 9 :

Bốn lớp \(7{A_1};\,7{A_2};7{A_3};7{A_4}\) trồng được \(172\) cây xung quanh trường. Tính số cây của lớp \(7{A_4}\) đã trồng được biết số cây của lớp \(7{A_1}\) và \(7{A_2}\) tỉ lệ với \(3\) và \(4\), số cây của lớp \(7{A_2}\) và \(7{A_3}\) tỉ lệ với \(5\) và \(6\), số cây của lớp \(7{A_3}\) và \(7{A_4}\) tỉ lệ với \(8\) và \(9\).

  • A.

    \(48\) cây

  • B.

    \(40\) cây

  • C.

    \(54\) cây

  • D.

    \(30\) cây

Xem lời giải >>