Cho \(7x = 4y\) và \(y - x = 24\). Tính \(x;y\).
-
A.
\(y = 4;x = 7\)
-
B.
\(x = 32;y = 56\)
-
C.
\(x = 56;y = 32\)
-
D.
\(x = 4;y = 7\)
Sử dụng tính chất của tỉ lệ thức và tính chất của dãy tỉ số bằng nhau.
Ta có \(7x = 4y \) nên \( \dfrac{x}{4} = \dfrac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{y}{7} = \dfrac{x}{4} = \dfrac{{y - x}}{{7 - 4}} = \dfrac{{24}}{3} = 8\)
Do đó \(x = 8.4 = 32\) và \(y = 8.7 = 56\)
Vậy \(x = 32;y = 56.\)
Đáp án : B
Các bài tập cùng chuyên đề
Chọn câu sai. Với điều kiện các phân thức có nghĩa thì:
Tìm hai số \(x;y\) biết \(\dfrac{x}{3} = \dfrac{y}{5}\) và \(x + y = - 32\)
Cho \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5}\) và \(x + y + z = - 90\). Số lớn nhất trong ba số \(x;y;z\) là
Cho \(\dfrac{x}{2} = \dfrac{y}{5}\) và \(xy = 10\). Tính \(x - y\) biết \(x > 0;y > 0.\)
Có bao nhiêu bộ số \(x;y\) thỏa mãn \(\dfrac{x}{5} = \dfrac{y}{4}\) và \({x^2} - {y^2} = 9\).
Ba lớp 7A1, 7A2, 7A3 có tất cả 180 học sinh. Số học sinh lớp 7A1 bằng \(\dfrac{9}{10}\) số học sinh lớp 7A2, số học sinh lớp 7A2 bằng \(\dfrac{{10}}{{11}}\) số học sinh lớp 7A3. Tính số học sinh của lớp 7A1.
Chọn câu đúng. Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\)thì:
Ba vòi nước cùng chảy vào một hồ có dung tích \(15,8{m^3}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{m^3}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi vòi chảy nhanh nhất chảy được bao nhiêu nước vào hồ?