Cho tam giác ABC vuông cân ở A. Trên đáy BC lấy hai điểm M, N sao cho BM = CN = AB. Tính \(\widehat {MAN}\).
-
A.
30\(^\circ \)
-
B.
45\(^\circ \)
-
C.
67,5\(^\circ \)
-
D.
60\(^\circ \)
Dựa vào tính chất tổng các góc của tam giác và dựa vào tính chất tam giác cân, tính được \(\widehat {ANM},\widehat {AMN}\) suy ra số đo góc MAN
Do tam giác ABC vuông cân ở A nên \(\widehat B = \widehat C = {45^0}\).
Xét tam giác AMB có: BM = BA (gt), nên tam giác AMB cân ở B.
Do đó \(\widehat {AMB} = \frac{{{{180}^0} - \widehat B}}{2} = \frac{{{{180}^0} - {{45}^0}}}{2} = 67,5^\circ \)
Chứng minh tương tự ta được tam giác ANC cân ở C và \(\widehat {ANC} = 67,5^\circ \).
Xét tam giác AMN, ta có:
\(\widehat {MAN} = {180^0} - \left( {\widehat {AMN} + \widehat {ANM}} \right) = {180^0} - {135^0} = {45^0}\).
Vậy \(\widehat {MAN} = {45^0}\)
Đáp án : B
Các bài tập cùng chuyên đề
Chọn câu sai.
Hai góc nhọn của tam giác vuông cân bằng nhau và bằng
Cho tam giác $ABC$ cân tại $A.$ Phát biểu nào trong các phát biểu sau là sai:
Một tam giác cân có góc ở đỉnh bằng \({64^0}\) thì số đo góc ở đáy là:
Một tam giác cân có góc ở đáy bằng \({70^0}\) thì số đo góc ở đỉnh là:
Số tam giác cân trong hình vẽ dưới đây là:
Tính số đo \(x\) trên hình vẽ sau:
Cho tam giác $ABC$ cân tại đỉnh $A$ với \(\widehat A = {80^0}\). Trên hai cạnh $AB,AC$ lần lượt lấy hai điểm $D$ và $E$ sao cho $AD = AE.$ Phát biểu nào sau đây là sai?
Cho tam giác \(ABC\) có \(\widehat A = 90^\circ ;\,AB = AC\). Khi đó
Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM = \dfrac{{BC}}{2}\). Số đo góc \(BAC\) là
Tam giác \(ABC\) có \(\widehat A = 40^\circ ;\,\widehat B - \widehat C = 20^\circ .\) Trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AE = AB.\) Tính số đo góc \(CBE.\)
Cho tam giác \(ABC\) có \(\widehat A = 120^\circ .\) Trên tia phân giác của góc \(A\) lấy điểm \(D\) sao cho \(AD = AB + AC.\) Khi đó tam giác \(BCD\) là tam giác gì?
Cho tam giác $ABC$ có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều $AMB$ và $ANC.$
Để hai tam giác cân bằng nhau thì phải cần điều kiện là:
Cho tam giác ABC cân tại A. Phát biểu nào trong các phát biểu sau là sai:
Một tam giác cân có góc ở đỉnh bằng \({54^0}\) thì số đo góc ở đáy là:
Phát biểu nào sau đây là đúng:
Cho tam giác ABC cân tại B. Kẻ đường trung trực của BA cắt AB tại H, trung trực của BC cắt BC tại K và trung trực của AC cắt AC tại L. 3 đường trung trực này cắt nhau tại I.
Cho tam giác ABC cân tại đỉnh A với \(\widehat A = {80^0}\). Trên hai cạnh AB, AC lần lượt lấy hai điểm D và E sao cho AD = AE. Phát biểu nào sau đây là sai?
Cho tam giác ABC có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều AMB và ANC.
Khẳng định đúng là: