Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chọn khẳng định đúng nhất
-
A.
Tam giác AMB đều
-
B.
AM = BM = CM
-
C.
AM = BC
-
D.
AB + AC = BC
Sử dụng các trường hợp bằng nhau của tam giác, suy ra các cạnh tương ứng bằng nhau.
Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Khi đó, 2. AM = AD
Xét tam giác ABM và DCM, có:
AM = DM
\(\widehat {AMB} = \widehat {CMD}\) ( đối đỉnh)
BM = CM ( gt)
\( \Rightarrow \Delta ABM = \Delta DCM\) ( c.g.c)
\( \Rightarrow \widehat {ABC} = \widehat {BCD}\) (2 góc tương ứng); AB = CD ( 2 cạnh tương ứng)
Mà 2 góc ABC và BCD ở vị trí so le trong
\( \Rightarrow \)AB // CD
Mà AB \( \bot \) AC
\( \Rightarrow \) CD \( \bot \) AC ( tính chất)
Xét tam giác vuông ABC và CDA có:
AC chung
\(\widehat {BAC} = \widehat {DCA}( = 90^\circ )\)
AB = CD( cmt)
\( \Rightarrow \Delta ABC = \Delta CDA\) ( c.g.c)
\( \Rightarrow \) AD = BC ( 2 cạnh tương ứng)
\( \Rightarrow \) 2. AM = BC
\( \Rightarrow \) AM = MB = MC
Đáp án : B
Các bài tập cùng chuyên đề
Chọn câu sai.
Hai góc nhọn của tam giác vuông cân bằng nhau và bằng
Cho tam giác $ABC$ cân tại $A.$ Phát biểu nào trong các phát biểu sau là sai:
Một tam giác cân có góc ở đỉnh bằng \({64^0}\) thì số đo góc ở đáy là:
Một tam giác cân có góc ở đáy bằng \({70^0}\) thì số đo góc ở đỉnh là:
Số tam giác cân trong hình vẽ dưới đây là:
Tính số đo \(x\) trên hình vẽ sau:
Cho tam giác $ABC$ cân tại đỉnh $A$ với \(\widehat A = {80^0}\). Trên hai cạnh $AB,AC$ lần lượt lấy hai điểm $D$ và $E$ sao cho $AD = AE.$ Phát biểu nào sau đây là sai?
Cho tam giác \(ABC\) có \(\widehat A = 90^\circ ;\,AB = AC\). Khi đó
Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM = \dfrac{{BC}}{2}\). Số đo góc \(BAC\) là
Tam giác \(ABC\) có \(\widehat A = 40^\circ ;\,\widehat B - \widehat C = 20^\circ .\) Trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AE = AB.\) Tính số đo góc \(CBE.\)
Cho tam giác \(ABC\) có \(\widehat A = 120^\circ .\) Trên tia phân giác của góc \(A\) lấy điểm \(D\) sao cho \(AD = AB + AC.\) Khi đó tam giác \(BCD\) là tam giác gì?
Cho tam giác $ABC$ có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều $AMB$ và $ANC.$
Để hai tam giác cân bằng nhau thì phải cần điều kiện là:
Cho tam giác ABC cân tại A. Phát biểu nào trong các phát biểu sau là sai:
Một tam giác cân có góc ở đỉnh bằng \({54^0}\) thì số đo góc ở đáy là:
Phát biểu nào sau đây là đúng:
Cho tam giác ABC cân tại B. Kẻ đường trung trực của BA cắt AB tại H, trung trực của BC cắt BC tại K và trung trực của AC cắt AC tại L. 3 đường trung trực này cắt nhau tại I.
Cho tam giác ABC cân tại đỉnh A với \(\widehat A = {80^0}\). Trên hai cạnh AB, AC lần lượt lấy hai điểm D và E sao cho AD = AE. Phát biểu nào sau đây là sai?
Cho tam giác ABC có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều AMB và ANC.
Khẳng định đúng là: