Cho tam giác ABC có \(\widehat B = 40^\circ ;\widehat C = 70^\circ \). Kẻ BD vuông góc với AC. Biết AD = 4 cm, tính độ dài cạnh AC.
-
A.
4 cm
-
B.
8 cm
-
C.
12 cm
-
D.
6 cm
Áp dụng định lí tổng ba góc trong tam giác, suy ra các góc bằng nhau.
Áp dụng trường hợp bằng nhau của tam giác vuông, suy ra các cạnh tương ứng bằng nhau
Xét tam giác ABC, có \(\widehat A + \widehat {ABC} + \widehat C = 180^\circ \) ( tổng 3 góc trong tam giác bằng 180 độ)
\(\begin{array}{l} \Rightarrow \widehat A + 40^\circ + 70^\circ = 180^\circ \\ \Rightarrow \widehat A = 70^\circ \\ \Rightarrow \widehat A = \widehat C\end{array}\)
Trong \(\Delta \)ABD vuông tại D, có \(\widehat A + \widehat {ABD} = 90^\circ \)
Trong \(\Delta \)CBD vuông tại D, có: \(\widehat C + \widehat {CBD} = 90^\circ \)
\( \Rightarrow \widehat {ABD} = \widehat {CBD}\)
Xét \(\Delta \)ABD và \(\Delta \)CBD , ta có:
\(\widehat {ADB} = \widehat {CDB}( = 90^\circ )\)
BD chung
\(\widehat {ABD} = \widehat {CBD}\)
\( \Rightarrow \)\(\Delta \)ABD = \(\Delta \)CBD ( g.c.g)
\( \Rightarrow \) AD = CD ( 2 cạnh tương ứng)
Mà AD = 4cm
\( \Rightarrow \)CD = 4 cm
Ta có:
AC = AD + CD = 4 + 4 = 8 ( cm)
Đáp án : B
Các bài tập cùng chuyên đề
Cho tam giác \(ABC\) và tam giác \(NPM\) có \(BC = PM;\,\widehat B = \widehat P = 90^\circ \). Cần thêm một điều kiện gì để tam giác \(ABC\) và tam giác \(NPM\) bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông ?
Cho tam giác $ABC$ và tam giác $MNP$ có \(\widehat A = \widehat M = {90^0},\,\widehat C = \widehat P\). Cần thêm một điều kiện gì để tam giác $ABC$ và tam giác $MNP$ bằng nhau theo trường hợp cạnh góc vuông – góc nhọn kề:
Cho tam gác $ABC$ và tam giác $DEF$ có \(\widehat B = \widehat E = {90^0},\,AC = DF,\,\,\widehat A = \widehat F\). Phát biểu nào trong các phát biểu sau đây là đúng
Cho tam giác \(ABC\) và tam giác $KHI$ có: \(\widehat A = \widehat K = 90^\circ ;\,AB = KH;\,BC = HI\) . Phát biểu nào trong các phát biểu sau là đúng:
Cho tam giác $ABC$ và tam giác $DEF$ có $AB = DE$ , \(\widehat B = \widehat E\) , \(\widehat A = \widehat D = 90^\circ \). Biết $AC = 9cm.$ Độ dài $DF$ là:
Cho tam giác $DEF$ và tam giác $HKI$ có \(\widehat D = \widehat H = 90^\circ \), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc \(I\) là:
Cho hình vẽ sau. Chọn câu đúng.
Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM\) là tia phân giác của góc \(A\). Khi đó, tam giác \(ABC\) là tam giác gì?
Cho tam giác \(ABC\) vuông cân tại \(A\). Một đường thẳng \(d\) bất kì luôn đi qua \(A\). Kẻ \(BH\) và \(CK\) vuông góc với đường thẳng \(d.\) Khi đó tổng \(B{H^2} + C{K^2}\) bằng
Cho tam giác ABC và tam giác KHI có: \(\widehat A = \widehat K = 90^\circ ;\,AB = KH;\,BC = HI\) . Phát biểu nào trong các phát biểu sau là đúng:
Cho tam giác DEF và tam giác HKG có \(\widehat D = \widehat H = 90^\circ \), \(\widehat E = \widehat K\), DE = HK.Biết \(\widehat F = {80^0}\). Số đo góc G là:
Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Kẻ MH vuông góc với AB (H thuộc AB) và MK vuông góc với AC (K thuộc AC). Khẳng định nào sau đây không đúng:
Cho góc nhọn xBy. Kẻ tia phân giác Bm của góc xBy. Trên tia Bm lấy điểm M bất kì. Kẻ MH vuông góc với Bx, MK vuông góc với By (H \( \in \) Bx, K \( \in \) By). Khẳng định sai là:
Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB > AC} \right).\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D.\) Kẻ \(DH\) vuông góc với \(BC.\) Trên tia \(AC\) lấy \(E\) sao cho \(AE = AB.\) Đường thẳng vuông góc với \(AE\) tại \(E\) cắt tia \(DH\) tại \(K.\) Chọn câu đúng.
Cho tam giác\(ABC\)và tam giác \(NPM\) có \(BC = PM;\,\widehat B = \widehat P = 90^\circ \). Cần thêm một điều kiện gì để tam giác \(ABC\)và tam giác \(NPM\)bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông ?
Cho tam giác \(ABC\) vuông cân tại \(A\). Một đường thẳng \(d\) bất kì luôn đi qua \(A\). Kẻ \(BH\) và \(CK\) vuông góc với đường thẳng \(d.\) Khẳng định đúng là:
Cho tam giác ABC. Từ A vẽ một cung tròn có bán kính bằng BC và từ C vẽ một cung tròn có bán kính bằng AB, hai cung tròn này cắt nhau tại D (D nằm khác phía của B đối với AC). Kẻ AH vuông góc với BC (H thuộc BC) và CK vuông góc với AD (K thuộc AD). Chọn câu sai
Cho tam giác ABC có AB < AC. Cho M là trung điểm của cạnh BC. Tia phân giác của góc A cắt đường thẳng qua M, vuông góc với BC tại điểm I. Qua I kẻ IH vuông góc với AB, IK vuông góc với AC ( H \( \in \) đường thẳng AB, K \( \in \) đường thẳng AC). Phát biểu nào sau đây sai: