Tam giác ABC có \(\widehat A = {80^0},\widehat B - \widehat C = {50^0}\). Số đo góc B và góc C lần lượt là:
-
A.
\(\widehat B = {65^0},\widehat C = {15^0}\)
-
B.
\(\widehat B = {75^0},\widehat C = {25^0}\)
-
C.
\(\widehat B = {70^0},\widehat C = {20^0}\)
-
D.
\(\widehat B = {80^0},\widehat C = {30^0}\)
+ Áp dụng tính chất tổng ba góc của một tam giác, tính tổng 2 góc B và C
+ Bài toán trở về tìm 2 số biết tổng và hiệu của chúng
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat B + \widehat C = 180^\circ - 80^\circ = 100^\circ \)
Ta có:
\(\begin{array}{l}\widehat C = (100^\circ - 50^\circ ):2 = 25^\circ ;\\\widehat B = \widehat C + 50^\circ = 25^\circ + 50^\circ = 75^\circ \end{array}\)
Đáp án : B
Các bài tập cùng chuyên đề
Cho tam giác \(ABC\) vuông tại \(A\). Khi đó
-
A.
\(\widehat B + \widehat C = 90^\circ \)
-
B.
\(\widehat B + \widehat C = 180^\circ \)
-
C.
\(\widehat B + \widehat C = 100^\circ \)
-
D.
\(\widehat B + \widehat C = 60^\circ \)
Cho tam giác $ABC$ có \(\widehat A = {96^0},\widehat C = {50^0}\). Số đo góc $B$ là:
-
A.
\({34^0}\)
-
B.
\({35^0}\)
-
C.
\({60^0}\)
-
D.
\({90^0}\)
Cho hình vẽ sau. Tính số đo \(x.\)
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({49^0}\)
-
D.
\({98^0}\)
Cho tam giác có ba góc bằng nhau. Tính số đo mỗi góc .
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({49^0}\)
-
D.
\({60^0}\)
Cho hình sau. Tính số đo $x.$

-
A.
\({90^0}\)
-
B.
\({100^0}\)
-
C.
\({120^0}\)
-
D.
\({140^0}\)
Cho tam giác \(ABC\) biết rằng số đo các góc $\widehat A;\widehat B;\widehat C$ tỉ lệ với $2;\,\,3;\,\,4$. Tính \(\widehat B.\)
-
A.
\(\widehat B = {60^0}\)
-
B.
\(\widehat B = {90^0}\)
-
C.
\(\widehat B = {40^0}\)
-
D.
\(\widehat B = {80^0}\)
Tam giác $ABC$ có $\widehat A = {100^0},\widehat B - \widehat C = {40^0}$. Số đo góc $B$ và góc $C$ lần lượt là:
-
A.
\(\widehat B = {60^0},\widehat C = {20^0}\)
-
B.
\(\widehat B = {20^0},\widehat C = {60^0}\)
-
C.
\(\widehat B = {70^0},\widehat C = {20^0}\)
-
D.
\(\widehat B = {80^0},\widehat C = {30^0}\)
Cho tam giác $ABC$ có $\widehat A = {50^0},\widehat B = {70^0}.$ Tia phân giác của góc C cắt cạnh AB tại M. Tính \(\widehat {AMC}\) và \(\widehat {BMC}.\)
-
A.
\(\widehat {AMC} = 120^\circ ;\,\widehat {BMC} = 60^\circ .\)
-
B.
\(\widehat {AMC} = 80^\circ ;\,\widehat {BMC} = 100^\circ .\)
-
C.
\(\widehat {AMC} = 110^\circ ;\,\widehat {BMC} = 70^\circ .\)
-
D.
\(\widehat {AMC} = 100^\circ ;\,\widehat {BMC} = 80^\circ .\)
Cho tam giác ABC có \(\widehat B = {80^0},3\widehat A = 2\widehat C.\)Tính \(\widehat A\) và \(\widehat C?\)
-
A.
\(\widehat A = 60^\circ ;\,\widehat C = 40^\circ .\)
-
B.
\(\widehat A = 30^\circ ;\,\widehat C = 50^\circ .\)
-
C.
\(\widehat A = 40^\circ ;\,\widehat C = 60^\circ .\)
-
D.
\(\widehat A = 40^\circ ;\,\widehat C = 30^\circ .\)
Cho hình vẽ sau. Tính số đo góc $x?$

-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({70^0}\)
Cho tam giác ABC. Tia phân giác của góc A cắt BC tại D. Tính số đo $\widehat {ADC}$ biết rằng: \(\widehat B - \widehat C = {20^0}.\)
-
A.
\({80^o}\)
-
B.
\( {110^o}\)
-
C.
\({100^o}\)
-
D.
\({105^o}\)
Cho tam giác ABC bất kì và điểm D nằm trên cạnh BC.
Khẳng định sai là:
-
A.
\(\widehat {BAD} + \widehat {ABD} + \widehat {ADB} = 180^\circ \)
-
B.
\(\widehat {CAD} + \widehat {BAD} + \widehat {BAC} = 180^\circ \)
-
C.
\(\widehat {CAD} + \widehat {ADC} + \widehat {ACB} = 180^\circ \)
-
D.
\(\widehat {BAC} + \widehat {ACD} + \widehat {ABD} = 180^\circ \)
Cho tam giác ABC có \(\widehat A = 86^\circ ;\widehat B = 62^\circ \). Số đo góc C là:
-
A.
\({32^0}\)
-
B.
\({35^0}\)
-
C.
\(24^\circ \)
-
D.
\({90^0}\)
Cho hình sau. Tính số đo x:
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({100^0}\)
Cho tam giác ABC có \(\widehat A = {50^0},\widehat B = {70^0}\). Tia phân giác của góc C cắt cạnh AB tại M. Số đo góc BMC là:
-
A.
\({50^0}\)
-
B.
\(80^\circ \)
-
C.
\({100^0}\)
-
D.
\({90^0}\)
Cho hình vẽ sau. Tính số đo góc x:
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({70^0}\)
Cho hai đoạn thẳng AB và CD cắt nhau ở E. Các tia phân giác của các góc ACE và DBE cắt nhau ở K. Tính số đo góc BKC?
-
A.
90\(^\circ \)
-
B.
\(\widehat {BDC} - \widehat {BAC}\)
-
C.
\(\frac{{\widehat {BAC} + \widehat {BDC}}}{2}\)
-
D.
\(\widehat {BDC} + \widehat {BAC}\)
Tam giác ABC có \(\widehat B + \widehat C = \widehat A\) và \(\widehat C = 2\widehat B\). Tia phân giác của góc C cắt AB ở D. Tính \(\widehat {ADC}\)
-
A.
60\(^\circ \)
-
B.
90\(^\circ \)
-
C.
120\(^\circ \)
-
D.
30\(^\circ \)
Khẳng định nào sau đây là sai?
-
A.
Tam giác tù là tam giác có 1 góc tù
-
B.
Tam giác nhọn là tam giác có 3 góc đều là góc nhọn
-
C.
Góc lớn nhất trong 1 tam giác là góc tù
-
D.
2 góc nhọn trong tam giác vuông phụ nhau.
Cho hình sau. Tính số đo x:
-
A.
\({90^0}\)
-
B.
\({100^0}\)
-
C.
\({120^0}\)
-
D.
\({130^0}\)