Đề bài

Gọi $x_0$ là số thỏa mãn \(\dfrac{6}{{x - 1}} = \dfrac{4}{{4 + 3x}}\) với \(x - 1 \ne 0;4 + 3x \ne 0\), chọn kết luận đúng:

  • A.
    \(x_0< - 1\)
  • B.
    \(x_0> - 1\)
  • C.
    \(x_0>0\)
  • D.
    \(x_0>1\)
Phương pháp giải

+ Áp dụng tính chất cơ bản của tỉ lệ thức: Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(ad = bc\)

+ Sử dụng tính chất phân phối của phép nhân đối với phép cộng để bỏ dấu ngoặc và quy tắc chuyển vế để chuyển các số hạng chưa biết về một vế, chuyển các số hạng đã biết sang vế còn lại. Từ đó ta tìm được \(x\).

Lời giải của GV Loigiaihay.com

\(\dfrac{6}{{x - 1}} = \dfrac{4}{{4 + 3x}}\)                                 

\(6.(4 + 3x) = 4.(x - 1)\)

\(24 + 18x = 4x - 4\)

\(18x - 4x = - 4 - 24\)

\(14x = - 28\)

\(x = - 2\) (thỏa mãn)

Vậy \(x­_0 = - 2<-1\).

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu đúng. Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì

Xem lời giải >>
Bài 2 :

Chỉ ra đáp án sai: Từ tỉ lệ thức $\dfrac{5}{9} = \dfrac{{35}}{{63}}$ ta có tỉ lệ thức sau :

Xem lời giải >>
Bài 3 :

Các tỉ số nào sau đây lập thành một tỉ lệ thức?

Xem lời giải >>
Bài 4 :

Các tỉ lệ thức có thể được từ đẳng thức \(5.\left( { - 27} \right) = \left( { - 9} \right).15\) là

Xem lời giải >>
Bài 5 :

Cho bốn số $2;{\rm{ }}5;{\rm{ }}a;{\rm{ }}b$ với \(a, b \ne 0\) và $2a = 5b$, một tỉ lệ thức đúng được thiết lập từ bốn số trên là:

Xem lời giải >>
Bài 6 :

Tìm \(x\) biết \(\dfrac{{ - 1}}{2}:(2x - 1) = 0,2:\dfrac{{ - 3}}{5}\)

Xem lời giải >>
Bài 7 :

Có bao nhiêu giá trị \(x\) thỏa mãn  \(\dfrac{{16}}{x} = \dfrac{x}{{25}}\)

Xem lời giải >>
Bài 8 :

Giá trị nào dưới đây của \(x\) thỏa mãn \(2,5:7,5 = x:\dfrac{3}{5}\)

Xem lời giải >>
Bài 9 :

Cho tỉ lệ thức $\dfrac{x}{{15}} = \dfrac{{ - 4}}{5}$ thì:

Xem lời giải >>
Bài 10 :

Biết rằng \(\dfrac{{2x - y}}{{x + y}} = \dfrac{2}{3}.\) Khi đó tỉ số \(\dfrac{x}{y}\) bằng

Xem lời giải >>
Bài 11 :

Biết \(\dfrac{t}{x} = \dfrac{4}{3};\)\(\dfrac{y}{z} = \dfrac{3}{2};\)\(\dfrac{z}{x} = \dfrac{1}{6},\) hãy tìm tỉ số \(\dfrac{t}{y}.\)

Xem lời giải >>
Bài 12 :

Giá trị nào của $x$ thỏa mãn \(\dfrac{3}{{1 - 2x}} = \dfrac{{ - 5}}{{3x - 2}}\)

Xem lời giải >>
Bài 13 :

Tìm số hữu tỉ $x$ biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\)\(\left( {y \ne 0} \right).\)

Xem lời giải >>