Lý thuyết Giải tam giác và ứng dụng thực tế >
Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.
Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.
1. Định lí cosin
Trong tam giác ABC:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\)
Hệ quả
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)
2. Định lí sin
Trong tam giác ABC: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)
(R là bán kính đường tròn ngoại tiếp tam giác ABC)
Hệ quả
\(a = 2R.\sin A;\quad b = 2R\sin B;\quad c = 2R\sin C\)
\(\sin A = \frac{a}{{2R}};\quad \sin B = \frac{b}{{2R}};\quad \sin C = \frac{c}{{2R}}.\)
3. Các công thức tính diện tích tam giác
1) \(S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\)
2) \(S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C\)
3) \(S = \frac{{abc}}{{4R}}\)
4) \(S = pr = \frac{{(a + b + c).r}}{2}\)
5) \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (Công thức Heron)
- Giải mục 1 trang 74, 75 SGK Toán 10 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 75, 76, 77 SGK Toán 10 tập 1 - Chân trời sáng tạo
- Giải bài 1 trang 77 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 2 trang 77 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 77 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo